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Quadratic Knapsack Problem (QKP), an extension of the canonical simple Knapsack Problem, is NP Hard
in the stronger sense. No pseudo-polynomial time algorithm is known to exist which can solve QKP
instances. QKP has been studied intensively due to its simple structure yet challenging difficulty and
numerous applications. A few attempts have been made to solve large size instances of QKP due to its
complexity. Quantum Inspired Evolutionary Algorithm (QIEA) provides a generic framework that has
often been carefully tailored for a given problem to obtain an effective implementation. In this work, an
improved and parallelized QIEA, dubbed IQIEA-P is presented. Several additional features make it more
balanced in exploration and exploitation and thus have better applicability. Computational experiments
are presented on large QKP instances of 1000 and 2000 items. The improvements are inherently par-
allelizable and, therefore, good speedups are obtained on a multi-core machine. No parallel algorithm is
available for QKP. The solutions provided by QIEA-P are competitive with those obtained from the state of
the art algorithm.

& 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The 0/1 Quadratic Knapsack Problem (QKP) is a generalization
of the 0/1 Knapsack Problem (KP) introduced by Gallo et al. [1].
Given n items to be filled in a knapsack where wj is the positive
integer weight of jth item, c is a positive integer knapsack capacity
and an n�n nonnegative integer matrix P¼(pij) is given, where pjj

is a profit achieved if item j is selected, and, for j4 i, pijþpji is the
additional profit achieved if both items i and j are selected.
Without loss of generality matrix P is considered symmetric such
that pij¼pji for all i and j. Hence, additional profit achieved if both
items i and j are selected is considered as pij rather than pijþpji,
for j4 i. QKP is to find a subset of items whose total weight is not
more than the knapsack capacity c such that the overall profit is
maximized. If xj is binary variable which is equal to 1 if jth item is
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selected and 0 otherwise, the problem is formulated as follows.

Maximize :
Pn

i ¼ 1
Pn

j ¼ 1 pijxixj
Subject to :

Pn
j ¼ 1 wjxjrc

xjA 0;1f g; jAf1;…;ng
ð1Þ

The KP is a particular case of QKP which arises when pij¼0 for
all ia j. The Clique problem, is another particular case of QKP,
which requires checking whether, for a given integer k, a given
undirected graph G¼(V, E) contains a complete subgraph on k
nodes. The popular optimization version of Clique, called Max
Clique, calls for an induced complete subgraph with a maximum
number of nodes.

The Max Clique, can be solved using a QKP algorithm by using
binary search. Max Clique is not only NP-hard in strong sense but is
one of the hardest combinatorial optimization problems. Same
properties apply to QKP as well. Pseudo polynomial time algo-
rithms exist for KP but no such algorithm exists for QKP. QKP is
thus considered much more difficult than the simple KP [2,3].

QKP is thus a challenging problem. Nevertheless, it has been
studied widely due to its generality and wide applicability in
several areas like facility location problems [4,5], compiler design
[6], finance [7], VLSI design [8] and weighted maximum b-clique
problem [9,10].
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Gallo et al. [1] introduced QKP and presented a method to
derive upper bounds using upper planes. Several attempts have
been made to solve QKP [3]. Some recent ones are as follows.
Pisinger et al. [11] presented an algorithm based on Lagrangian
relaxation\decomposition and aggressive reduction. It has been
shown to solve some large-sized instances with 1500 binary
variables. Le´tocart et al. [12] presented another algorithm based
on a re-optimization technique to accelerate the resolution of each
independent sequence of 0–1 linear knapsack problems induced
by the Lagrangian relaxation\decomposition. Computational
results for randomly generated instances of 600 binary variables
were presented. Large-sized benchmark instances of Pisinger et al.
[11] (1500 binary variables) and Le´tocart et al. [12] (600 binary
variables) were randomly generated and tested. They have not
been recorded by the authors [13].

Existing standard deterministic approaches like CPLEX can not
solve large instances of QKP. Several studies on heuristic and
meta-heuristic methods have also been made in the literature.
These provide satisfactory solutions for QKP within reasonable
time. Some effective heuristic and meta-heuristic methods applied
in last few decades to solve QKP are given in Table 1. From the
table, it is clear that state of the art method applied on large QKP
instances is GRASP and Tabu Search proposed recently by Yang
et al. [13]. A GRASP and tabu search method [13] solves larger
instances of size 1000 and 2000 variables. No parallel algorithm
exists which solves large size QKP.

Evolutionary Algorithms (EA), inspired by natural selection,
mimic iterative evolutionary processes with a set of solutions
encoded in a population. The population evolves based on the rule
of “survival of the fittest” [14]. The computational challenges are
faced due to problem difficulty and size, the complexity of fitness
function, and distribution characteristics of solution space, and
also on runtime efficiency of stochastic search [15]. EA's are con-
sidered inherently parallelisable [16].

QIEA refers to a subclass of EA where representation and evo-
lution is implemented based on concept of Quantum computing.
Similar to EA, QIEA exhibit the property of inherent parallelism
embedded in the evolutionary process. Some attempts have been
made in literature to utilize parallel implementations of QIEA for
simple KP [17,18].

In this work, an improved and parallelized QIEA, dubbed IQIEA-
P is presented with several additional features to make it more
balanced in exploration and exploitation and also have better
applicability to different types of combinatorial optimization pro-
blems. The improvements are inherently parallelizable and,
therefore, good speedups are obtained on a multi-core machine.
This is the first attempt to parallelise the QIEA for QKP. This
attempt in fact presents the first parallel algorithm to solve large
instances of QKP. Computational experiments are presented on
large QKP instances used by Yang et al. [13] (1000 and 2000 binary
variables) which have been obtained on request. Quality of solu-
tions provided by IQIEA-P is competitive to best known results.
Parallelization provides good speedup.

The rest of the paper is organized as follows. The basic concept
of QIEA is explained in Section 2. In Section 3 the proposed IQIEA-P
is presented. The primary differences of the strategy used to
improve QIEA in present work as compared to earlier QIEAs are
discussed. A comparison of IQIEA-P with sequential version
(IQIEA) is done in Section 4. Conclusions and future work are
discussed in Section 5.
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2. Quantum inspired evolutionary algorithm (QIEA)

The QIEA introduced in [28] is population-based stochastic
evolutionary algorithm. It uses the qubit, a vector, to represent the
Please cite this article as: C. Patvardhan, et al., Parallel improved quan
Knapsack Problems, Swarm and Evolutionary Computation (2015), h
probabilistic state of individual. Each qubit is represented as qi ¼
αi
βi

h i
;whereαi; βi are complex numbers so that αi

2
���� is the prob-

ability of state being 0 and βi
2
���� is the probability of state being

1 such that αi
2þ βi

2 ¼ 1
�������� . For the purpose of QIEAs, αi and βi are

assumed to be real. Thus, a qubit string Q; represents a super-
position of 2n binary states and provides an extremely compact
representation of entire space.

The process of generating binary strings from the qubit
string, Q, is known as observation. To observe the qubit string Q,
a string P is generated randomly, the ith bit Pi being 1 with
probability Q2

i independent of other bits. In each of the itera-
tions, several solution strings are generated from Q by obser-
vation as given above and their fitness values are computed. The
solution with best fitness is identified. The updating process
moves the qubits of Q towards the best solution slightly such
that there is a higher probability of generation of solution
strings, which are similar to best solution, in subsequent itera-
tions. A quantum gate is utilized for this purpose so that qubits
retain their properties [28].

One such gate used in this work is the Rotation Gate, which
updates the qubits as follows:

αtþ1
i

βtþ1
i

2
4

3
5¼

cos ðΔθiÞ � sin ðΔθiÞ
sin ðΔθiÞ cos ðΔθiÞ

" #
αt
i

βt
i

" #
ð2Þ

where, αtþ1
i and βtþ1

i denote probabilities for ith qubit in (tþ1)th
iteration and Δθi is equivalent to the step size in typical iterative
algorithms in the sense that it defines the rate of movement
towards the currently best solution. The value for Δθi is chosen to
be 0.01 when observed solution is not better than best solution
found till the time of observation.

The above description outlines the basic elements of QIEA.
Observing a qubit string n times yields n different solutions
because of the probabilities involved. The fitness of these is
computed and the qubit string Q is updated towards higher
probability of producing strings similar to the one with highest
fitness. This sequence of steps continues; these ideas can be easily
generalized to work with multiple qubit strings.

QIEA of [25] (dubbed here QIEA-QKP) could give near optimal
solutions for QKP benchmark instances of size up to 200 binary
variables in reasonable time. Following improvements have been
made in the original QIEA to obtain QIEA-QKP.

� To update the qubit individuals the rotation gate used is slightly
different, which may assign different rotation angle to different
qubits depending on the bits of observed current solution and
best solution.

� A rudimentary local search technique is used which generate n
solutions in neighborhood of solutions (provided by observation
of qubit individuals) and keep the best.

� Migration Operator is removed.

A host of QIEA-based attempts have been reported in the lit-
erature that utilizes QIEAs for the solution of a wide variety of
problems [31,32]. QIEAs, of course, are not a “one-size fits all”
solution. The No Free lunch Theorem prohibits that. However, a
particular QIEA has to be designed for the problem at hand to
achieve high performance with respect to the state-of-art algo-
rithms for the problem. The primary strengths and weaknesses of
the QIEAs are briefly discussed in Table 2. Many of the weaknesses
are shared with other EAs as well.
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Table 1
Effective Heuristic and Meta-heuristic methods applied on QKP.

Methods Authors (Year) Instances Significant achievements Brief description of results

Linearization and exchange
(LEX) heuristic

Hammer and Rader
(1997) [19]

Instances of 100 variables Achieved profit more than 99% of optimal in less than 1 s. Presented error of solutions obtained from optimal and
computational time to solve.

Greedy genetic algorithm
(GGA)

Julstrom (2005) [20] Sample BS benchmark instances of 100
and 200 variables

Solved to optimality with probability 0.902 using around
15000 Function Evaluations (FES) on an average.

Presented number of times it finds optimum within 50 runs
for GA. Also both the generations required to reach optimal
and time in seconds to reach optimal are reported. The FES
required per generation are mentioned.

Mini-swarm algorithm Xie and Liu (2007)
[21]

All aBS benchmark instances 100 and 200
variables

Solved to optimality with probability 0.949 requiring 1 s on
an average

Reported number of hits made to optimal in 100 runs and
average execution time per run in seconds

Artificial Bee Colony (ABC)
algorithm

Pulikanti and Singh
(2009) [22]

All aBS benchmark instances 100 and 200
variables

Solved to optimality with probability 0.987 requiring 22 s on
an average

Reported quality of solution in terms of number of hits made
to optimal and average value obtained in 100 runs for each
problem and computational cost in terms of minimum and
average time to reach optimal

Artificial fish swarm algo-
rithm (AFSA)

Azad et al.
(2011,2014) [23,24]

Sample aBS benchmark instances 100 and
200 variables

Reported to return optimal with probability of around
0.5 requiring 12500 FES and 35.5 s on an average.

Presented Number of successful runs and average function
value. Average FES and average time required in seconds per
run out of 30 runs and 50 runs have also been reported

Quantum Inspired Evolu-
tionary Algorithm (QIEA)

Patvardhan et al.
(2012) [25]

Sample aBS benchmark instances 100 and
200 variables

Solved to optimality with probability 0.944 using around
140,000 FES on an average per trial

Reported average iterations required to optimal, number of
hits made to optimal and average function value in 50 runs
for each problem. The FES required per iteration are
mentioned.

GRASP and Tabu search Yang et al. (2013)
[13]

aBS Benchmark Instances of sizes 100, 200,
300 binary variables. Benchmark Instances
of 1000, 2000 binary variables

Solved 1000 and 2000 variable instances with average gap of
1.403 from known tightest Upper bound with average
probability of 0.916 and relative percentage deviation from
best as 0.0008 taking 288.39 s on an average. The compar-
ison on the results of aBS benchmark instances of size 100
and 200 binary variables shows that Grasp and Tabu out-
performs then state of the art.

Presented gap of best solution from upper bound and hits
made to best and relative percenatge deviation (rpd) from
best in 100 runs. Also reported the average time required to
solve in seconds.

a BS Benchmark Instances means Instances [26] referred by Billionet and Soutif [27].
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Table 2
Strengths and weaknesses of Quantum Inspired Evolutionary Algorithm.

Strengths Weaknesses

1. QIEAs have better representation power using qubits to enable use of smaller
populations (ideally even a size of 1) [29,30]. Smaller populations require lesser
computation during search.

1. Slow convergence may result from use of small qubit rotations. Use of large qubit
rotations may cause the algorithm to miss a good solution completely.

2. QIEAs have an Estimation of Distribution Algorithm (EDA) style functioning with
implicit determination of distributions leading to better solutions [31,32].

2. Inclusion of features promoting faster convergence may cause the algorithm to get
stuck in local optima.

3. QIEAs provide an extremely flexible framework that can be adapted for the solu-
tion of both real – parameter function optimization problems as well as combi-
natorial optimization problems [32,30]. This makes them very versatile in their
applicability

3. Slow convergence limits the problem sizes that can be tackled using QIEAs.

4. The QIEA framework also provides the flexibility necessary for the inclusion of
features appropriate for a given problem towards delivering better search perfor-
mance [32].

4. Implementation of QIEAs, just as other EAs, is more an art to enable balance of
computational effort devoted to exploration and exploitation that is required for
good search performance.

5. QIEA inherently favors exploration of the search space initially gradually shifting
towards exploitation as the search progresses which is a desirable aspect [30].

6. There is a possibility of utilizing one of several termination criteria appropriate for
the problem at hand [33].

C. Patvardhan et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
3. Proposed parallel improved QIEA (IQIEA-P)

The proposed framework of IQIEA-P, as shown in Fig. 1, is
implemented on a machine having multi-core host CPU processor
using OpenMPs. Number of individuals to be processed on a
single thread or process depends on capability of machine and
total number of individuals required for effective performance on
the given instance.

The IQIEA-P executes through several phases described as
follows.

I. Parallel generation of sort orders. The input elements are
considered in an order based on the knowledge about their
priority for inclusion in the knapsack, as described in Section
3.1. Multiple sort orders are considered for QKP in order to
provide requisite diversity in the population of solutions.
Consideration of Multiple sort orders implies additional
computational burden. To mitigate this, these sort orders
are processed simultaneously on parallel threads or
processes.

II. Parallel Initialization and exploitation of the individuals. Steps
during initialization viz., parallel initialization of Qubit indi-
viduals (described in Section 3.1.1), faster exploitation of
some qubit individuals in parallel (described in Section 3.3),
parallel initialization of local best solutions are implemented
as separate parallel sections performed in sequence one after
another.

III. Parallel execution of independent portions of IQIEA-P: There are
several independent portions in the proposed algorithmic
structure (Section 3.2) with steps such as mutation, re-
initialization, purge, improvement in repair and specialized
local search (described in Sections 3.1 and 3.4 through 3.7)
embedded in them. These are executed on separate threads
or processes. These large parallel portions result in high
speedups in IQIEA-P.

3.1. Multiple greedy sort orders evaluated in parallel

The QIEAs in the form of qubit individuals, estimate the prob-
ability of the bits in an individual to be set to 1 (or 0) in an optimal
solution on the basis of the history of solutions generated during
evolution. Some good heuristic can be used to estimate the relative
preferences of items to be selected while initializing the qubit
individuals and also when repairing the infeasible solutions to
reduce the task of QIEA ahead. The priority order of items to be
selected in a particular problem instance dubbed GreedySortOrder,
Please cite this article as: C. Patvardhan, et al., Parallel improved quan
Knapsack Problems, Swarm and Evolutionary Computation (2015), h
is computed as shown in Fig. 2. The psedo-code SortGreedy is
explained as follows.

Starting with an empty solution, elements are added iteratively.
The item that provides maximum individual profit is selected as
the first item. During subsequent iterations, the item having
maximum Relative Value Density (RVD) with respect to the partial
solution available before the iteration is added. If P is a partial
solution such that kAP implies kth item is selected. The relative
value density of any item iA{1,…,n} with respect to P, RVDP

i is
computed as ðpiiþ

P
jAP=i

pijÞ=wi.

Items selected according to the GreedySortOrder described
above may not provide the optimal solution. However, if a differ-
ent first item is chosen in step 3a different selection results. Thus,
multiple orders are generated by choosing different items as first
item in other generated orders (MultipleSortGreedy). These are
then used to initialize different qubit individuals and repair dif-
ferent observed solutions.

The computation cost involved in finding a GreedySortOrder is
high. However, other orders can be generated independently and,
so, are generated in parallel in IQIEA-P. In each of such orders
determined by MultipleSortGreedy the first element is chosen
randomly from the first 30% of elements in the GreedySortOrder.
The rest of the items are selected in the same manner as in
GreedySortOrder.

3.1.1. Initializing the qubit individuals using MultipleSortGreedy
The qubit individuals are initialized as shown in Fig. 3. The

items are divided in 3-parts based on where they lie in the
sequence – the first part contains items having high preference for
selection in knapsack, second part having medium preference and
third having low preference. Hence, qubits for items lying in first
part (third part) are assigned values closer to 1 (0). Qubits for
items lying in second part necessarily require more search for
convergence to either 0 or 1, hence medium values between 0 and
1 are assigned to them. As a result, IQIEA-P starts search in areas of
the solution space favored by such initialized qubit individuals.

Initializing qubits based on a single sort order GO obtained
from GreedySortOrder would limit the exploitation to a single
area. Thus, multiple sort orders GOi; iA1;…r; are used in round-
robin fashion to initialize all the qubit individuals.

The process of initialization of different qubit individuals is
performed in parallel as they can be initialized independent of
each other.
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Fig. 1. The IQIEA-P framework. (O, R, M refers to operations Observe, Repair and Mutate respectively). (Note: GB: Global Best Solution, LBi: ith Local Best Solution, Qi: ith
Qubit individual [ iA1;…;n], SOj: jth sort order jA1;…;r}).
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3.1.2. Repairing observed solutions using MultipleSortGreedy
A QIEA uses a simple repair function to make the observed

solutions feasible. In IQIEA, during each repair step, items having
lower preference according to GreedySortOrder are removed and
132

Please cite this article as: C. Patvardhan, et al., Parallel improved quan
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items having higher preference are included whenever required.
This improves the quality of solution obtained from each repair
and hence improves the speed of convergence. The pseudo-code is
given in Fig. 4.
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Fig. 2. Pseudo-code for SortGreedy returning GreedySortOrder.

Fig. 3. Initialization of qubits. Items, for which qubits are shown, are sorted in a
sort order from left to right.

Fig. 4. Pseudo-code for RepairGreedy.

Fig. 5. Structure of IQIEA-P with balanced exploration and exploitation.
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If the same order is used each time in repairing all the infea-
sible solutions, the results would be almost alike every time. Thus,
multiple orders are used in repair function in a round-robin
manner to maintain diversity in the repaired solutions.

Repairing the solutions generated from different qubit indivi-
duals can be done in parallel and so the overhead is shared among
the threads executing in parallel.

3.2. Parallelisable balanced structure

The structure of QIEA introduced by Han and Kim [28] is
modified here. The proposed structure, as shown in Fig. 5, provides
better balance between exploitation and exploration capabilities
and enhances the parallelisability.

Local best solutions are replaced by either global best solution
or neighborhood local best solutions after global migration period
or local migration period in the original structure. In the proposed
structure the local best solutions are never replaced by global best
solution. These solutions are used as attractors in the Q-gate to
update the qubit individuals at two different levels. The qubits in
the proposed structure are updated using local best solution and
the global best solution separately. This modification benefits the
evolution primarily in two ways as follows.

� In the modified structure multiple attractors are maintained. All
of which may not be same as the best solution found so far
Please cite this article as: C. Patvardhan, et al., Parallel improved quan
Knapsack Problems, Swarm and Evolutionary Computation (2015), h
globally. Using global best solution as attractor most of the time
(as is evident in simple QIEA where global migration converts
all attractors to be same as the global best) leads to early con-
vergence of the qubit individuals to probably a sub-optimal
solution. Different local attractors for different qubit individuals
guide them to search different search areas in parallel. The idea
of using multiple attractors or non-elitist attractor has also been
used in previous attempts to avoid local optima. In versatile
QIEA proposed by Platel et al. [34] the attractor had to be
replaced by the currently generated solution unconditionally. So
the attractor changes more frequently than the original QIEA
and may become inferior to the best solution found so far i.e. a
non-elitist attractor. The QIEA proposed by Lasse et al. [35]
maintains a population of attractors selected using tournament
selection performed on a set of generated good solutions.

� The proposed algorithm not only uses multiple attractors but
also uses different attractors to update each qubit individual at
the same time. The multiple local best solutions are used as
attractors to preserve the local traits. The global best solution
preserves the information about the global optimum of the
evolving population found so far. Preserving these separately for
a longer time helps in steady and controlled evolution. It is also
a pivotal feature of memetic computation, considered an
effective way of hybridizing the population based search tech-
niques [36–39].

In the proposed structure multiple observations are made for a
qubit individual at a time before selecting local best solution and
updating qubit individual. This helps in many ways viz.,

� It helps in better exploitation of the areas represented by the
qubit individuals.

� It helps to assess the health of individuals in current qubit
population. For example if multiple observations made on a
qubit individual lead to same solution every time then the qubit
individual may be considered as the one which has converged
to extremes and may not help in further evolution.

A larger proportion of work can be performed independently in
an iteration of QIEA in the proposed structure. More observations
are performed for a qubit individual followed by several rotations
towards local best solution before synchronising to select the
global best solution and rotating towards it (global rotation). The
dotted regions in Fig. 5 indicate the portions of algorithm that can
be executed in parallel.

3.3. Faster exploitation of systematically Initialized Qubit Individuals

The sort orders as described in Section 3.2 help to initialize the
qubit individuals to have better estimation of probability
tum inspired evolutionary algorithm to solve large size Quadratic
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distribution in order to avoid redundant exploitation of solution
space. The iterations of QIEA when executed on initialized qubit
individual further improve these estimations. On the other hand,
executing QIEA for few number of iteration also performs a quick
scan of promising regions of search space. It may help in solving
the easier instances quickly. Hence, the basic steps of QIEA listed
below are performed on a quarter of the qubit individuals for small
number of times (here empirically taken as quarter of total itera-
tions performed in main QIEA) before initializing the population of
local best solutions.

� Make
� RepairGreedy
� ImproveLocal
� Update

Another quarter of qubit individuals are then initialized to the
qubit individuals as they appear after the local exploitation. This
task can be executed as independent for each individual hence
performed in parallel.

3.4. Specialized local search procedure for QKP to improve inter-
mediate solutions

The local best solutions are improved using a local search
function specially designed for QKP. It tries to explore the quality
of all solutions in the neighborhood of a local best solution and
selects the best. It iteratively executes passes as long as gain in
profit is observed. The ith element (if not in solution) is either
included or replaced by an item j already in solution after each
pass. The action of inclusion (replacement) is performed for the
individual (pair) which results in maximum gain in profit. Let P be
a feasible solution, the pseudo-code of procedure used to improve
profit of P is given in Fig. 6.

The function ImproveLocal is computationally expensive and
might lead to the local optimum. RandImproveLocal is a lighter
version which performs comparison of only randomly selected
actions (inclusion and replacement) before replacing. It reduces
the computational effort and helps avoiding local optima.
 106

107
108
109
110
111
112
113
114
115
116
117
118
119
120

Fig. 6. Pseudo-code for ImproveLocal.
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RandImproveLocal is performed on half of the population of
individuals and ImproveLocal on the other half. These local search
functions are executed independently for different individuals by
parallel threads.

3.5. Mutation of solutions appearing to be stuck in local optimum

All EAs suffer from tendency of getting stuck in local optima.
Here the chances are higher as both the repair and improve pro-
cedures try to narrow down the search to the local best solutions.
To overcome this problem, a generated solution is mutated when
found close to the previously recorded global best solution i.e.
Hamming distance between them is small. This is done to divert
the search to a different region. 2–3 bits in the solution vector are
randomly selected and changed to 0. Elements with better RVD are
then iteratively included in solution as long as the solution
remains feasible.

This operator improves diversity without increasing the com-
putational effort too much. It also helps to explore the solution
space around a current solution such that no local optimal in
vicinity is missed. This improves the chances of finding optimal in
case it is in the vicinity.

This function is performed independently on different solutions
so the computational overhead posed by the mutation is shared
among the threads working on different qubit individuals in
parallel.

3.6. Re-initialization of qubit individuals

After some generations, if qubits of an individual converge all
observations would yield the same solution. Such qubit strings are
re-initialized to restore diversity. Qubit individuals, which gen-
erate same solution more than 3 times out of 5 are re-initialized.
The qubits are set to 1/√2 in the first half of the search and, in the
second half, they are re-initialized using sort orders as given in
Section 3.1.1.

3.7. Purging the non-performing qubit individuals stochastically
(StochasticPurge)

The qubit individuals need to provide some improved solution
within specified number of iterations (say, 5). At the end of these
iterations, the qubit individual is purged with probability of 0.5 if
fitness of the best solution generated by it is worse than the
average of the worst and best solution generated so far globally.
On purging, it is replaced by the best qubit individual found so far.

3.8. Initializing global best (GB) using heuristic and specialized local
search

The initial global best solution (GB) is set to the solution found
using local search procedure described in Section 3.4 on the initial
Greedy Solution found using pseudo-code in Fig. 7. This helps in
121
122
123
124
125
126
127
128
129
130
131
132Fig. 7. Pseudo-code for SolveGreedy.
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Fig. 8. Pseudo-code for IQIEA-P.
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solving the easy instances faster. Moreover, initializing the global
attractor with a good solution rather than a random solution helps
in faster convergence to a better solution.

The simple constructive heuristic for finding Greedy Solution
works as follows. Starting with an infeasible solution which has all
the items included in the knapsack the greedy algorithm removes
items iteratively till the solution becomes feasible. An item having
minimum RVD is removed from solution each time. GS is a set
representing the greedy solution.

The complete pseudo-code for Improved QIEA implemented for
parallel execution is presented in Fig. 8. Following notations are
used.
 118

Q
P
B

q

p

b
b
M

Please cite this a
Knapsack Proble
119
(t):
 Qubit population in tth iteration.

120
(t):
 population of binary solutions in tth iteration.

121
(t):

122
population of best solutions found till tth
iteration.
123
t
j
 jth individual in Q(t).
124
125
t
j :
 jth individual in P(t).
126

t
j :
 jth individual in B(t). Same as LBs (Fig. 6).
127
:
 best solution observed so far. Same as GB.

128
axIterations:

129
maximum number of iteration set as termi-
nation criterion by the user
130
:
 Number of items to be considered in problem

131
the current iteration
t:
n

rticle as: C. Patvardhan, et al., Parallel improved quan
ms, Swarm and Evolutionary Computation (2015), h
MultipleSortGreedy (GreedySortOrders, Nsortorder): Sort-
Greedy() is executed Nsortorders times, to obtain that many sort
orders in GreedySortOrders, with different choice of first ele-
ment. Here the first sort order is generated by executing the
function exactly as coded in SortGreedy(), while nth sort order,
for n41, is generated with the first element chosen randomly
from 30% initial elements of 1st sort order.
InitializeGreedy (qt

j , GO): GO is 2-D array containing r sort
orders in total such that GO[i] refers to ith sort order. The
procedure initializes the qubit individual qt

j as explained in
Section 3.1 using the sort order number GO[j mod r].
ReInitialize(qt

j ): For initial half iterations all qubits of qt
j are set

to 1/√2. For rest of the iterations qt
j is initialized using

InitializeGreedy.
Make P(t) from Q(t): The procedure collapses the qubit indivi-
duals in Q(t) observing solution individuals in P(t).
HamDistance(ps

j , b): Returns hamming distance between two
binary strings ps

j and b.
Mutate(ps

j ): Mutates the solution ps
j as described in Section 3.5.

Update qt
j based onbt

j : Rotates the qubits qt
j towards bits in bt

j as
explained earlier and defined in [28] using the rotation angle
as 0.01.
StochasticPurge (B(t), be, we, Q(t), bqbit): Sets be and we to the
best and worst values in B(t), be and we. Replaces the qubit
individual qt

j by bqbit if value of bt
j is below (beþwe)/2.
132
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Table 3
Improved performance of IQIEA-P over IQIEA [13] for QKP Instances of size 1000 and 2000 variables.

n_d_i Best Known Best achieved IQIEA IQIEA-P Speed Up

RPD SR t(s) RPD SR t(s)

1000_25_1 6172407 6172407 0 100 0.23 0 100 0.146 1.55
1000_25_2 229941 229941 0 100 252.50 0 100 17.824 14.17
1000_25_3 172418 172418 0 100 176.58 0 100 14.042 12.57
1000_25_4 367426 367426 0 100 4.49 0 100 2.735 1.64
1000_25_5 4885611 4885611 0 100 169.97 0 100 18.023 9.43
1000_25_6 15689 15689 0 100 3.88 0 100 2.794 1.39
1000_25_7 4945810 4945810 0 100 151.42 0 100 10.635 14.24
1000_25_8 1710198 1710198 0 100 372.25 0 100 38.016 9.79
1000_25_9 496315 496315 0 100 4.12 0 100 2.693 1.53
1000_25_10 1173792 1173792 0 100 348.17 0 100 32.684 10.65
1000_50_1 5663590 5663590 0 100 159.79 0 100 15.852 10.08
1000_50_2 180831 180831 0 100 102.38 0 100 9.837 10.41
1000_50_3 11384283 11384283 0 100 94.84 0 100 6.966 13.62
1000_50_4 322226 322226 0 100 145.05 0 100 11.512 12.60
1000_50_5 9984247 9984247 0.000856 3 387.02 0.000849 6 16.492 23.47
1000_50_6 4106261 4106261 0 100 218.19 0 100 26.888 8.11
1000_50_7 10498370 10498370 0 100 46.27 0 100 6.197 7.47
1000_50_8 4981146 4981146 0.005167 1 1256.97 0.004656 1 101.504 12.38
1000_50_9 1727861 1727861 0 100 3.63 0 100 2.561 1.42
1000_50_10 2340724 2340724 0 100 458.21 0 100 38.948 11.76
1000_75_1 11570056 11570056 9.46E�05 72 774.56 0.00012 76 57.801 13.40
1000_75_2 1901389 1901389 0 100 343.47 0 100 35.460 9.69
1000_75_3 2096485 2096485 0 100 410.67 0 100 33.272 12.34
1000_75_4 7305321 7305321 0 100 256.12 0 100 19.986 12.81
1000_75_5 13970240 13970240 0.002566 10 753.26 0.002346 16 64.035 11.76
1000_75_6 12288738 12288738 0 100 73.70 0 100 10.512 7.01
1000_75_7 1095837 1095837 0 100 252.09 0 100 20.654 12.21
1000_75_8 5575813 5575813 0 100 739.34 0 100 65.745 11.25
1000_75_9 695774 695774 0 100 121.20 0 100 12.471 9.72
1000_75_10 2507677 2507677 0 100 3.38 0 100 2.586 1.31
1000_100_1 6243494 6243494 0.000377 64 1094.06 0.000283 68 96.208 11.37
1000_100_2 4854086 4854086 9.06E�06 99 702.72 1.81E�05 96 80.487 8.73
1000_100_3 3172022 3172022 0 100 279.49 0 100 31.601 8.84
1000_100_4 754727 754727 0 100 91.81 0 100 13.756 6.67
1000_100_5 18646620 18646620 0.00029 33 485.40 0.000297 35 44.278 10.96
1000_100_6 16018298 16020232 0 100 96.02 0 100 11.393 8.43
1000_100_7 12936205 12936205 0 100 141.42 0 100 15.528 9.11
1000_100_8 6927738 6927738 0.00038 60 927.10 0.000366 68 84.706 10.94
1000_100_9 3874959 3874959 0 100 3.03 0 100 2.563 1.18
1000_100_10 1334494 1334494 0 100 389.75 0 100 36.037 10.82
2000_25_1 5268188 5268188 0 100 3546.56 0 100 451.067 7.86
2000_25_2 13294030 13294030 0 100 1201.36 0 100 186.651 6.44
2000_25_3 5500433 5500433 0 100 4431.71 1.09E�06 100 509.844 8.69
2000_25_4 14625118 14625118 0 100 13.282 0 100 13.286 1.00
2000_25_5 5975751 5975751 0 100 21.041 0 100 21.035 1.00
2000_25_6 4491691 4491691 0 100 2821.36 0 100 317.178 8.90
2000_25_7 6388756 6388756 0 100 41.13 0 100 20.841 1.97
2000_25_8 11769873 11769873 0 100 16.235 0 100 16.236 1.00
2000_25_9 10960328 10960328 0 100 1454.65 0 100 187.348 7.76
2000_25_10 139236 139236 0 100 24.982 0 100 24.982 1.00
2000_50_1 7070736 7070736 0 100 4454.17 0 98 470.694 9.46
2000_50_2 12587545 12587545 4.13E�06 98 3731.55 0 98 501.619 7.44
2000_50_3 27268336 27268336 0 100 14.263 0 100 14.263 1.00
2000_50_4 17754434 17754434 1.97E�05 50 3488.15 1.97E�05 50 396.971 8.79
2000_50_5 16805490 16805433 0.003103 0 6220.76 0.003108 0 589.315 10.56
2000_50_6 23076155 23076155 1.46E�05 74 2076.65 1.8E�05 70 243.050 8.54
2000_50_7 28759759 28759759 0.00668 1 2070.20 0.006818 1 201.994 10.25
2000_50_8 1580242 1580242 0 100 826.81 0 100 116.759 7.08
2000_50_9 26523791 26523791 7.54E�05 88 2149.12 7.48E�05 94 232.279 9.25
2000_50_10 24747047 24747047 0 100 1203.69 0 100 169.517 7.10
2000_75_1 25121998 25121998 0.000175 68 5570.12 0.000198 52 571.806 9.74
2000_75_2 12664670 12664670 0 100 3186.01 0 100 341.354 9.33
2000_75_3 43943994 43943994 0 100 1276.77 0 100 128.524 9.93
2000_75_4 37496613 37496613 1.04E�06 97 2199.43 1.39E�06 98 234.359 9.38
2000_75_5 24834948 24834948 0 100 3655.59 0 100 395.601 9.24
2000_75_6 45137758 45137758 0 100 12.759 0 100 12.759 1.00
2000_75_7 25502608 25502608 0 100 3432.80 0 100 340.182 10.09
2000_75_8 10067892 10067892 0 100 2714.10 0 100 291.290 9.32
2000_75_9 14171994 14171994 0.000256 63 6288.70 0.000255 68 646.902 9.72
2000_75_10 7815755 7815755 2.24E�05 98 3860.89 8.29E�05 94 394.449 9.79
2000_100_1 37929909 37929909 0 100 3075.48 0 100 321.090 9.58
2000_100_2 33647322 33648051 0.000127 65 6483.84 0.000184 66 607.696 10.67
2000_100_3 29952019 29952019 0.000225 30 5010.64 0.000256 26 529.829 9.46
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Table 3 (continued )

n_d_i Best Known Best achieved IQIEA IQIEA-P Speed Up

RPD SR t(s) RPD SR t(s)

2000_100_4 26949268 26949268 4.45E�07 94 5375.68 4.45E�07 98 602.483 8.92
2000_100_5 22041715 22041715 0.000971 3 7930.55 0.000957 6 861.113 9.21
2000_100_6 18868887 18868887 5.83E�05 29 6770.63 5.05E�05 20 715.625 9.46
2000_100_7 15850597 15850597 0.00025 10 5809.62 0.000249 18 650.508 8.93
2000_100_8 13628967 13628967 0 100 2870.46 0 100 292.190 9.82
2000_100_9 8394562 8394562 0 100 4017.08 0 100 369.983 10.86
2000_100_10 4923559 4923559 5.42E_05 97 2012.40 3.62E�05 96 193.325 10.41
Average 0.000272 85.09 1670.70 0.000266 85.24 178.77 9.346

Fig. 9. Comparing time taken by IQIEA, IQIEA-P and GRASP Tabu Search for instances having (a) 1000 variables (b) 2000 variables.

Fig. 10. Comparing Quality of solutions obtained from IQIEA and IQIEA-P in terms of RPD.
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The novel features introduced in IQIEA-P as compared to prior
attempts made on improving QIEA are summarized as follows.

� It uses a novel technique to initialize the qubit individuals. The
qubit individuals which represent an estimation of distribution
model have been initialized using the knowledge of preference
of items to be selected in a solution based on a heuristic/s. These
Please cite this article as: C. Patvardhan, et al., Parallel improved quan
Knapsack Problems, Swarm and Evolutionary Computation (2015), h
qubit individuals are then expected to generate solutions in the
regions around the heuristic solution/s. This has resulted in to
better solutions searched in less time in QIEAs.

� It has a different structure having benefits as described in Sec-
tion 3.2.

� The various operators like local search, re-initialization, sto-
chastic purge and mutation has been carefully knitted together
132
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Fig. 11. Comparison of IQIEA and IQIEA-P with the help of box-plots drawn for time taken and RPD observed using different algorithms. (a) Box-plots for time(s) taken to
solve instances of size 1000. (b) Box-plots for time(s) taken to solve instances of size 2000. (c) Box-plots for RPD to solve instances of size 1000. (d) Box-plots for RPD to solve
instances of size 2000.

Table 4
Comparing Performance of IQIEA-P on selected instances using different number of
threads while execution on basis of RPD of obtained solutions and time taken.

Problem ↓ RPD Time (s)

Threads - 5 12 24 5 12 24

1000_25_2 0 0 0 51.223 28.478 52.570
1000_50_5 0.000865 0.000677 0.000808 56.269 24.479 13.580
1000_75_1 0.000196 9.6E�07 3.75E�05 162.452 92.111 51.756
1000_100_8 0.00043 0.00043 0.000215 240.520 162.166 112.073
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with primary steps of QIEA in order to help the search to exploit
and explore the search space in a more balanced manner.

� The improvements are such that more independent sub tasks
can be identified to be executed on parallel architecture.
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4. Results and discussion

The computational experiments are performed on Dell HPCC
having one DELL PowerEdge R710 Rack Server as master blade and
24 DELL PowerEdge M610 Blade Servers as compute nodes. Each
blade uses IntelsXeons processor (5500 and 5600 series)
@2.67 Ghz. The IQIEA-P was executed on the cluster through 24
threads spawned at a time.

Max Iterations is set to 60,η1 and η2 are set to 5 and population
size is set to 320. The instances are referred to as n_d_i where n
means the size of problem, d means the density of profit matrix
and i mean seed value ranging from 1 to 10.

While reporting the results the following notations are used.
The column best known lists the best value known from the cur-
rent state of the art algorithm [13]. The column best achieved
shows the best value achieved using IQIEA or IQIEAP (since the
best solution provided by both of them is of same quality). If value
obtained in a run for an instance is v and best achieved value for
the instance is vB then RPD (average of relative percentage
Please cite this article as: C. Patvardhan, et al., Parallel improved quan
Knapsack Problems, Swarm and Evolutionary Computation (2015), h
deviation of v from best value over total number of runs) is cal-
culated as Averagetotalruns ððvB–Þv�100=vBÞ.

Performance of IQIEA-P is compared with IQIEA on larger
Instances of size 1000 and 2000 instances of [13]. Table 3 shows
the comparison with obtained speedups. The quality of solutions
obtained from IQIEA-P and IQIEA is similar, while IQIEA-P takes
significantly lesser time to reach best solution. The comparison
between IQIEA and IQIEA-P is presented on the basis of average
RPD, value of best solution achieved; average time taken to com-
pute the best solution per run out of 100 runs and SR, strike rate as
the number of hits made to the best known value out of 100 runs.
The average speed up in IQIEA-P over IQIEA for each problem is
mentioned.

Some observations made out of comparison between results
obtained by IQIEA-P and IQIEA are as follows.

� The overall average time observed in IQIEA to execute one run
of all 80 instances is 1670.30 while it is around 178seconds in
IQIEA-P, giving an average speedup of 9.4.

� Maximum speedup obtained for an instance is 23.4 when 24
threads are used on a population of size 320. This implies that
the algorithm is capable of providing maximum speedup if
appropriate numbers of processors are available and larger
populations are required to solve the problem.

� Instances for which the speedup is small are the ones where the
best solution is obtained with execution of the parallel portion
for small number of iterations.

� Quality of solutions obtained using sequential and parallel
version is similar. Though comparing average of RPD and SR
shows that parallelisation leads to improvement in quality of
solutions. The overall quality of solutions is better than the
current state of the art. The best solution obtained from IQIEA
and IQIEA-P is better in two and worse in one case as compared
to best solution provided by the state of the art technique [13]
for the benchmark problems. For all other problems IQIEA and
IQIEA-P provided similar solutions as the current state of
the art.
tum inspired evolutionary algorithm to solve large size Quadratic
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Fig. 12. Comparing Performance of IQIEA-P on selected instances using different number of threads while execution. (a) RPD obtained in IQIEA-P when executed with
different number of threads. (b) Time taken by IQIEA-P when executed with different number of threads.

Table 5
Impact on Value of RPD obtained from various versions of IQIEA-P formed by excluding only one of the features proposed using selected instances.

IQIEA-P With-
out -

Initial fast
exploitation

Attractor
initialization

Local search Mutation Modification in
structure

Purges Q-bit individual re-
initialization

Sort orders IQIEA-P

Problem ↓

1000_25_2 0.0003866 0.0156562 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0034792 0.0000000
1000_50_5 0.0008502 0.0012186 0.0008502 0.0009215 0.0007857 0.0007323 0.0008925 0.0045961 0.0008079
1000_75_1 0.0001604 0.0005954 0.0000346 0.0001594 0.0002314 0.0000845 0.0001844 0.0058964 0.0000375
1000_100_8 0.0006448 0.0004298 0.0005373 0.0001075 0.0000000 0.0004298 0.0004298 0.0339264 0.0002149
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� The results show that as the size and complexity of problem
increases it can be dealt by the parallel implementation using
appropriate size of population and number of processors.

Fig. 9 plots a comparison of average time taken in seconds by
IQIEA and IQIEA-P. The high speed up obtained in parallel over
sequential version of IQIEA is explicitly visible in all instances from
plots of Fig. 9. The speedup is higher when time taken by
sequential version is high confirming the utility of parallelization.

Fig. 10 plots a comparison of quality of solutions obtained in
terms of RPD. According to Fig. 10 quality of solutions obtained
using IQIEA and IQIEA-P is similar. Fig. 11 shows the box plots for
time taken and RPD observed using different algorithms under
consideration for instances of size 1000 and 2000 separately.

An analysis of the impact of changing the number of threads on
the performance of IQIEA-P has been studied. Few selected pro-
blems viz., 1000_25_2, 1000_50_2, 1000_75_1 and 1000_100_8 has
been chosen for this study. For this study the observation is done
only for 25 runs on each problem and a comparison is done
between three implementations with number of threads as 5, 12
and 24. Table 4 shows the average values of RPD and Time taken in
seconds by these implementations over 25 runs. The graphs have
also been plotted for both the RPD and Time taken by different
implementations in Fig. 12. The observations made from the
results are as follows.

� The quality of solutions obtained in implementations using
5 threads is considerably lower than using 12 and 24 threads.
Quality of solutions obtained, using 12 threads and 24 threads,
is competitive.

� The computational effort, in terms of time taken to compute the
solutions, required in implementation which uses 24 threads is
significantly lesser than other implementations which use 5 and
12 threads.

Further study has been done to analyze the impact of each
feature that has been incorporated in original QIEA of Han and Kim
Please cite this article as: C. Patvardhan, et al., Parallel improved quan
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to design the proposed IQIEA-P. Same four problems viz.,
1000_25_2, 1000_50_2, 1000_75_1 and 1000_100_8 has been
selected for this study too. The different features that have been
proposed in IQIEA-P and considered in this study are as follows.

� Initial fast exploitation
� Attractor initialization
� Local search
� Mutation
� Modification in structure
� Purges
� Q-bit Individual re-initialization
� Sort orders

Twenty five different runs of each of the nine different versions
are performed on four problems mentioned above for this study.
The nine versions include the proposed IQIEA-P and eight others
such that each one of them is formed by removing only one fea-
ture from IQIEA-P. The comparison between nine different ver-
sions has been studied on the basis of impact observed on four
parameters of performance viz., RPD and StdDev for quality of
solutions and FES and Time taken for computational effort
required to compute the solutions.

In Table 5, the values of RPD observed during execution of
different versions are shown. The line graphs have been plotted in
Fig. 13. The values in Table 5 clearly shows that if any of the feature
of using sort orders or the feature of initializing the global
attractor is removed from IQIEA-P, the resulting algorithm per-
forms very badly in terms of RPD observed. Since the impact due
to these two features outperform the impact due to other features,
considering them while plotting graphs makes it difficult to
compare the impact between other features. Hence, these two
features have not been considered while plotting the graph in
Fig. 13 so that the comparison of impact due to other features can
be shown effectively.

In Table 6, the values of StdDev observed during execution of
different versions are shown. The line graphs have been plotted in
tum inspired evolutionary algorithm to solve large size Quadratic
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Fig. 14. The values in Table 6 clearly shows that if any of the feature
of using sort orders or the feature of initializing the global
attractor is removed from IQIEA-P, the resulting algorithm per-
forms very badly in terms of StdDev observed. Hence, these fea-
tures has not been considered while plotting the graph in Fig. 14,
so that the comparison of impact due to other features can be
shown effectively.

The observations from Tables 5 and 6 and Figs. 13 and 14 clarify
some important points. These help to do a comparative study on
impacts the incorporation of different features in IQIEA-P have on
the quality of solutions obtained. These observations are listed as
follows.

� Making use of sort orders in controlling the search process
through different ways have the highest impact on quality of
solutions obtained.
Fig. 13. Comparing Impact of removing some selected features, on Quality of Solutions o
RPD in IQIEAP and several versions of IQIEA-P each without only one of the feature as m
have not been considered in this graph as they clearly have very high impact.

Table 6
Impact on Value of StdDev obtained from various versions of IQIEA-P formed by exclud

IQIEA-P Without
-

Initial fast
exploitation

Attractor
initialization

Local
search

Mutation

Problem ↓

1000_25_2 2.67 22.11 0 0
1000_50_5 21.33 40.94 21.33 0
1000_75_1 55.29 69.88 11.63 55.33
1000_100_8 33.50 35.31 35.31 22.33

Fig. 14. Comparing Impact of removing some selected features, on Quality of Solutions o
StdDev in IQIEAP and several versions of IQIEA-P each without only one of the feature as
have not been considered in this graph as they clearly have very high impact.
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� Initialization of attractor is next and similarly important in
finding good solutions.

� All other features have a competitive impact on the quality of
solution obtained using the proposed IQIEA-P. No one of them is
observed to outperform others for all considered cases.

� It is clear from graphs in Figs. 14 and 15 that IQIEA-P is impacted
negatively due to removing any of the feature in general apart
from a few exceptions.

� So it shows that the features incorporated in the IQIEA-P
balances each other and hence resulting comprehensive
IQIEA-P provides better results generally.

In Table 7, the average values of FES taken by different versions
to calculate the solutions are shown. The line graphs have been
plotted in Fig. 15. Table 8 shows the average values for Time taken
to compute the solution in seconds. The line graphs have also been
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btained, from IQIEA-P. Different Line Graphs are plotted for the obtained values of
entioned in Legend. The features of Sort Orders and Initialization of the Attractor

ing only one of the features proposed using selected instances.

Modification in
structure

Purges Q-bit individual re-
initialization

Sort
orders

IQIEA-P

0 0 0 0 0
43.09 34.57 40.80 35.24 31.05
54.51 29.33 47.42 368.08 12.63
0 35.31 35.31 312.86 29.54

btained, from IQIEA-P. Different Line Graphs are plotted for the obtained values of
mentioned in Legend. The features of Sort Orders and Initialization of the Attractor
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Fig. 15. Comparing Impact of removing some selected features, on computational effort, from IQIEA-P. Different Line Graphs are plotted for the values of FES required in
IQIEAP and several versions of IQIEA-P each without only one of the feature as mentioned in legend.

Table 7
Impact on value of FES taken by various versions of IQIEA-P formed by excluding only one of the features proposed using selected instances.

IQIEA-P With-
out -

Initial fast
exploitation

Attractor
initialization

Local search Mutation Modification in
structure

Purges Q-bit individual re-
initialization

Sort orders IQIEA-P

Problem ↓

1000_25_2 197396.6 154836.7 39774.33 38311 37821 38564.33 40914.33 1 42421
1000_50_5 11331 169311.2 77681 50784 33056.44 18447.22 8803.667 80321 79318.33
1000_75_1 157781 276886.7 141167.7 245457.7 46101.11 233851 127107.7 420154.3 293991
1000_100_8 162187.7 150576.7 135101 151851 61734.33 92934.33 57337.67 435924.3 102671

Table 8
Impact on Time taken by various versions of IQIEA-P formed by excluding only one of the features proposed using selected instances.

IQIEA-P With-
out -

Initial fast
exploitation

Attractor
initialization

Local search Mutation Modification in
structure

Purges Q-bit individual re-
initialization

Sort orders IQIEA-P

Problem ↓

1000_25_2 52.57044 43.17558 18.93942 20.99801 21.4534 20.46704 20.6706 2.835458 52.57044
1000_50_5 13.57999 46.98485 22.79089 21.17384 16.71649 13.85619 13.79521 55.434 13.57999
1000_75_1 51.75579 70.16949 46.21626 73.76166 24.83407 63.77632 39.61631 196.7863 51.75579
1000_100_8 112.0733 90.08667 76.69523 91.93855 71.343 83.94629 72.24878 207.4989 112.0733

Fig. 16. Comparing Impact of removing some selected features, on computation effort, from IQIEA-P. Different Line Graphs are plotted for the values of time taken in s by
IQIEAP and several versions of IQIEA-P each without only one of the feature as mentioned in Legend.
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drawn to in Fig. 16 for the comparison between the impact dif-
ferent features have on IQIEA-F. Following observations are made.

� The removal of features heuristic based features, like making
use of sort orders and initialization of attractor, has very high
impact on the computation effort required by the algorithms in
Please cite this article as: C. Patvardhan, et al., Parallel improved quan
Knapsack Problems, Swarm and Evolutionary Computation (2015), h
terms of both the time taken to compute and FES done during
evolution for it. So it shows these features not contribute to
improve the quality in proposed IQIEA-P but also to reduce the
computational effort required for that.

� All other features have a random effect on reduction of the
computational effort required by the IQIEA-P. But as observed
tum inspired evolutionary algorithm to solve large size Quadratic
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earlier they have a considerable on improving the quality of
solutions.

Table 9 shows the overall picture of this analysis. To use the
space more efficiently in this table each of the parameter has been
further abbreviated as follows: RPD is named as R, StdDev as S, FES
as F, and Time is named as T. The four problems viz., 1000_25_2,
1000_50_2, 1000_75_1 and 1000_100_8 has also been referred
using numbers from 1 to 4. If removing a feature the value of any
parameter viz RPD, StdDev, FES or Time reduces then it is con-
sidered to have a negative impact or in other words it is con-
sidered to contribute negatively for the improvement of IQIEA-P.
However, if any of these values is observed to increase than it is
considered to have positive impact. If no change is observed than
it is considered to have no impact. Following final observations are
made from the comprehensive analysis.

� As expected the features of using Sort Orders and Initialization
of Attractor have highest contribution in the improvement of
performance of IQIEA-P in all aspects.

� Almost all other features have positive contribution in
improvement of the quality of solutions obtained. This
improvement may be either in RPD which measures closeness
of solutions to best known solution or StdDev which measures
the consistency of obtaining same solution in different runs.
There are a few exceptions (marked in bold) for this where a
feature contributed badly in terms both of these parameters
while solving an instance.

The Evolutionary algorithm is a population based search tech-
nique considered slow in terms of time they take to converge due
to large population size and large number of function evaluations
required. Moreover the problem of getting stuck in local optima
has to be handled carefully without increasing much of the com-
putational effort to obtain effective performance from EAs. QIEAs
also require higher time due to large number of observations and
rotations required apart from issues common to EAs.

On the other hand the EA's use simple operations which can be
applied directly or with little modification to other similar or not
so similar problems, hence an EA (or QIEA in particular) with
generalized frame work capable to provide effective and compe-
titive performance is appreciated.

So the objective accomplished here is that a QIEA, the popu-
lation based search technique generally considered slow, is
improved through the help of parallelization with significant
speedup. The presented algorithm has additional advantage that it
is scalable. Bigger and more complex problems can still be solved
in reasonable time by having more threads in parallel.
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5. Conclusions and future work

The NP-hard optimization problem QKP is difficult in the sense
that no pseudo-polynomial time algorithm exists to solve it. Very
few attempts have been made in literature to solve large QKP
instances. This work presents an improved parallel QIEA, IQIEA-P.
The structure and features are applied to improve its capability to
exploit and explore the solution space as well as to enhance its
capability to be parallelised. These ideas to improve QIEA are
applicable to solve other similar or not so similar problems.

The comparison of performance of IQIEA-P with its sequential
version, IQIEA, shows that the proposed parallelisation in IQIEA-P
provides high speedup. Hence, IQIEA-P can be used to tackle
problem within reasonable time by increasing the number of
individuals and hence the number of parallel threads at software
level and providing sufficient cores at hardware level.
tum inspired evolutionary algorithm to solve large size Quadratic
ttp://dx.doi.org/10.1016/j.swevo.2015.09.005i

http://dx.doi.org/10.1016/j.swevo.2015.09.005
http://dx.doi.org/10.1016/j.swevo.2015.09.005
http://dx.doi.org/10.1016/j.swevo.2015.09.005


Q3

Q4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74

C. Patvardhan et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎16
The results presented shows that the proposed algorithm
IQIEA-P provide solutions competitive to state of the art approach
for large QKP benchmark instances (size 1000 and 2000 binary
variables).

Implementing other models for parallelization of IQIEA with its
modified structure which allow larger population sizes keeping
reasonable time limit may be taken as future work to obtain
results for larger instances and/or with improved quality.
75
76
77
78
79
Uncited reference

[40].

80
81
82
83
84
85
86
87
88
Acknowledgments

Authors are grateful to Department of Science and Technology,
India (DST) and Deutsche Forschungsgemeinschaft, Germany
(DFG) for the support under Project no. INT/FRG/DFG/P-38/2012
titled “Algorithm Engineering of Quantum Evolutionary Algo-
rithms for Hard Optimization Problems".
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
References

[1] G. Gallo, P. Hammer, B. Simeone, Quadratic Knapsack Problems, Math. Pro-
gram. Study 12 (1980) 132–149.

[2] Alberto Caprara, David Pisinger, Paolo Toth, Exact solution of the Quadratic
Knapsack Problem, INFORMS J. Comput. vol. 11 (no. 2) (1999) 125–137.

[3] David Pisinger, The quadratic knapsack problem-a survey, Discret. Appl. Math.
155 (2007) 623–648.

[4] J. Rhys, A selection problem of shared fixed costs and network flows, Manag.
Sci. 17 (1970) 200–207.

[5] C. Witzall, Mathematical methods of site selection for electronic message
system (EMS) NBS Internal Report, Technical Report, 1975.

[6] E. Johnson, A. Mehrotra, G. Nemhauser, Min-cut clustering, Meth. Program. 62
(1993) 133–151.

[7] D.L. Laghhunn, Quadratic binary programming with applications to capital
budgetting problems, Oper. Res. 18 (1970) 454–461.

[8] C.E. Ferreira, A. Martin, C.C. deSouza, Formulations and valid inequalities for
node capacitated graph partitioning, Math. Program. 74 (1996) 247–266 , no.

[9] G. Dijkhuijen, U. Faigle, A cutting-plane approach to he edge-weighted max-
imal clique problem, Eur. J. Oper. Res. 69 (1993) 121–130.

[10] K. Park, K. Lee, S. Park, An extended formulation approach to the edge
weighted maximal cliqur problem, Eur. J. Oper. Res. 95 (1996) 671–682.

[11] W. David Pisinger, Anders Bo Ramussen, Rune Sandvik, Solution of large
Quadratic Knapsack Problems through aggressive reduction, INFORMS J.
Comput. 19 (2) (2007) 280–290.

[12] L. Létocart, A. Nagih, G. Plateau, Reoptimization in Lagrangian methods for the
0-1 quadratic knapsack problem, Comput. Oper. Res. 39 (2012) 12–18.

[13] Z. Yang, G. Wang, F. Chu, An effective GRASP and tabu search for the 0-1
quadratic knapsack problem, Comput. Oper. Res. 40 (2013) 1176–1185.

[14] D.E. Goldberg, Genetic Algorithms in Search, Optimization And Machine
Learning, Addison-Weley Longman Publishing Co, Boston, MA, USA, 1989.

[15] P.,S. Oliveto, J. He, X. Yao, Time complexity of evolutionary algorithms for
combinatorial optimization: a decade of result, Int. J. Autom. Comput. 4 (3)
(2007) 281–293.

[16] E. Alba, M. Tomassini, Parallelism and evolutionary algorithms, IEEE Trans.
Evolut. Comput. 6 (5) (2002) 443–462.
Please cite this article as: C. Patvardhan, et al., Parallel improved quan
Knapsack Problems, Swarm and Evolutionary Computation (2015), h
[17] K. Han, K. Park, C. Lee, J. Kim, Parallel quantum-inspired genetic algorithm for
combinatorial optimization prblem, in: Proceedings CEC, vol. 2, 2001,
pp. 1422–1429.

[18] R. Nowotniak, J. Kucharski, GPU-based tuning of quantum-inspired genetic
algorithm for a combinatorial optimization problem, Bull. Pol. Acad. Sci.: Tech.
Sci. 60 (2) (2012) 323–330.

[19] P.L. Hammer, D.J. Rader, Efficient methods for solving quadratic 0-1 knapsack
problem, INFOR vol. 35 (1997) 179–182.

[20] B.A. Julstrom, Greedy, genetic and greedy genetic algorithms for the quadratic
knapsack problem, in: Genetic and evolutionary computation conference,
Washingtom DC, USA, 2005, pp. 607–614.

[21] X. Xie, J. Liu, A Mini-Swarm for the quadratic knapsack problem, in: IEEE
Swarm Intelligence Symposium, Honolulu, USA, 2007, pp. 190–197.

[22] S. Pulikanti, A. Singh, An Artificial Bee Colony Algorithm for the Quadratic
Knapsack Problem, in: ICONIP 2009, Part II, LNCS 5864, 2009, pp. 196–205.

[23] Md. Abul Kalam Azad, Maria A.C. Rocha, M.G.P. Fernandes, Solving 0-1
Quadratic Knapsack Problem with a Population-based Artificial Fish Swarm
Algorithm, in: International Conference on Applied and Computational
Mathematics, 2012.

[24] Md. Abdul Kalam Azad, Maria A.C. Rocha, Edite M.G.P. Fernandes, A simplified
binary artificial fish swarm algorithm for 0-1 quadratic knapsack problems, J.
Comput. Appl. Math. 259 (2014) 897–904 [Online] 〈http://www.sciencedirect.
com/science/article/pii/S0377042713005074〉.

[25] C. Patvardhan, P. Prakash, A. Srivastav, A novel quantum-inspired evolutionary
algorithm for the quadratic knapsack problem, Int. J. Math. Oper. Res. 4 (2)
(2012) 114–127.

[26] A. Billionet, E. Soutif, QKP Instances, 2004. [Online] 〈http://cedric.cnam.fr/
�soutif/QKP/QKP.html〉.

[27] A. Billionet, E. Soutif, An exact method based on Lagrangian decomposition for
the 0-1 quadratic knapsack problem, Eur. J. Oper. Res. 157 (2004) 565–575.

[28] Kuk-Hyun Han, Jong-Hwan Kim, Quantum-inspired evolutionary algorithm
for a class of combinatorial optimization, IEEE Trans. Evolut. Comput. 6 (6)
(2002) 580–593.

[29] K. Han, J. Kim, On setting the parameters of quantum-inspired evolutionary
algorithm for practical application, in: Proceedings CEC, 2003, pp. 178–184.

[30] K.-H. Han, On the Analysis of the Quantum-inspired Evolutionary Algorithm
with a Single Individual, in: IEEE Congress on Evolutionary Computation,
Vancouver, Canada, 2006.

[31] M.D. Platel, Stefan Schliebs, Nikola Kasabov, Quantum-inspired evolutionary
algorithm: a multimodel EDA, IEEE Trans. Evolut. Comput. 13 (6) (2009)
1218–1232.

[32] Gexiang Zhang, Quantum-inspired evolutionary algorithms: a survey and
empirical study, J. Heuristics 17 (3) (2011) 303–351.

[33] K. Han, J. Kim, Quantum-inspired evolutionary algorithms with a new ter-
mination criterion, h-epsilon gate, and two-phase scheme, IEEE Trans. Evolut.
Comput. 8 (2) (2004) 156–169.

[34] M.D. Platel, S. Schliebs, N. Kasabov, A versatile quantum-inspired evolutionary
algorithm, in: Proceedings CEC, 2007, pp. 423–430.

[35] Kliemann Lasse, Kliemann1 Ole, C. Patvardhan, Sauerland Volkmar, Srivastav
Anand, A New QEA Computing Near-Optimal Low-Discrepancy Colorings in
the Hypergraph of Arithmetic Progressions, in: SEA 2013, 2013, pp. 67–78.

[36] P. Moscato, On evolution, search, optimization, genetic algorithms and martial
arts: Toward memetic algorithms, California Instiute of Technology, Pasadena,
CA, Technical Report 826, 1989.

[37] P. Moscato, C. Cotta, A. Mendes, Memetic algorithms, in: New Optimization
Techniques in Engineering, Berlin Heidelberg, 2004, pp. 53–85.

[38] Y.S. Ong, M.H. Lim, X. Chen, Memetic computation: Past, present & future, in:
IEEE Computational Intelligence Magazine, 5, 2, 2010, pp. 24–31.

[39] Xianshun Chen, Yew-Soon Ong, Meng-Hiot Lim, Kay Chen Tan, A multi-facet
survey on memetic computation, IEEE Trans. Evolut. Comput. 15 (5) (2011)
591–607.

[40] P. Arpaia, D. Maisto, C. Manna, A quantum-inspired evolutionary algorithm
with a competitive variation operator for multiple-fault diagnosis, Appl. Soft
Comput. 11 (8) (2011) 4655–4666.
119

120
121
122
123
124
125
126
127
128
129
130
131
132

tum inspired evolutionary algorithm to solve large size Quadratic
ttp://dx.doi.org/10.1016/j.swevo.2015.09.005i

http://www.sciencedirect.com/science/article/pii/S0377042713005074
http://www.sciencedirect.com/science/article/pii/S0377042713005074
http://cedric.cnam.fr/~soutif/QKP/QKP.html
http://cedric.cnam.fr/~soutif/QKP/QKP.html
http://dx.doi.org/10.1016/j.swevo.2015.09.005
http://dx.doi.org/10.1016/j.swevo.2015.09.005
http://dx.doi.org/10.1016/j.swevo.2015.09.005

	Parallel improved quantum inspired evolutionary algorithm to solve large size Quadratic Knapsack Problems
	Introduction
	Quantum inspired evolutionary algorithm (QIEA)
	Proposed parallel improved QIEA (IQIEA-P)
	Multiple greedy sort orders evaluated in parallel
	Initializing the qubit individuals using MultipleSortGreedy
	Repairing observed solutions using MultipleSortGreedy

	Parallelisable balanced structure
	Faster exploitation of systematically Initialized Qubit Individuals
	Specialized local search procedure for QKP to improve intermediate solutions
	Mutation of solutions appearing to be stuck in local optimum
	Re-initialization of qubit individuals
	Purging the non-performing qubit individuals stochastically (StochasticPurge)
	Initializing global best (GB) using heuristic and specialized local search

	Results and discussion
	Conclusions and future work
	Uncited reference
	Acknowledgments
	References




