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Abstract Quantum Inspired Evolutionary Algorithms
(QIEAs) are Evolutionary Algorithms which use concepts
and principles of quantum computing. The 0/1 knapsack
problem (KP) is a well known combinatorial optimization
problem that has been typically used to validate the perfor-
mance of QIEAs. However, there are some variants of KPs
called difficult knapsack problems (DKPs) that are known
to be more difficult to solve. QIEAs have not yet been fully
explored for solving these. In this work, an improved QIEA,
called QIEA-PSA is presented. A novel method to initial-
ize the qubit individuals based on heuristic information for
the KP instance and a method for size reduction for each
new generation are introduced in the presented QIEA-PSA.
Experiments are carried out for several types ofDKPs that are
much larger in size than those attempted hitherto. QIEA-PSA
provides much better solutions than QIEA with much lesser
computation times. Even a serial implementation of QIEA-
PSA competes favorably on the same problem instances
with a parallel implementation of an exact algorithm given
recently in literature. A comparison is made which shows
QIEA-PSA outperforms a recently applied population based
search technique to solve benchmarkKP instances. The ideas
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used for developing QIEA-PSA are general and may be uti-
lized with advantage on other problems.
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1 Introduction

The knapsack problem in its most basic form is defined as
follows:Given a set of n itemswith their profits pj andweights
wj, the problem is to select a subset of items such that profit
is maximized and weight does not exceed the capacity C.

maximize : ∑n
j=1 p j x j

subject to : ∑n
j=1 w j x j ≤ C

x j ∈ {0, 1} ∀ j ∈ {1, . . . , n}
(1)

The 0/1 knapsack problem (KP) is a well-known combinato-
rial optimization problem which typically arises in resource
allocation having financial constraints. It occurs in several
real world decision-making processes such as finding the
least wasteful way to cut raw materials, selection of capi-
tal investments and financial portfolios, selection of assets
for asset-backed securitization, and generating keys for the
Merkle–Hellman knapsack crypto system [1]. The KP has
been a problem of interest since the early days. The devel-
opment of effective exact algorithms for KP started in 1970s
[2–5]. Several problems can be reduced to KP [6]. Karp [7]
established that KP is p-complete i.e. if one finds a poly-
nomial time algorithm for KP then one would solve a wide
range of problems in polynomial time.

Quantum Inspired Evolutionary Algorithms (QIEAs) are
Evolutionary Algorithms that use concepts and principles of
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Procedure QIEA
1 Begin
2 t ← 0
3 Initialize (Q(t)), b
4 while ( t<MaxIterations)
5 Begin
6 t ← t+1
7 mmake P(t) from Q(t)
8 rrepair P(t)
9 copy P(t) to B(t)
10 for r from 0 to do
11 for s from 0 to do
12 mmake P(s) from Q(t)                             
13 rrepair P(s)
14 eevaluate P(s)
16 for each if better than ) then ←
18 end  //*for s*//
19 for each if ( is better than ) then ←
20 for each if ( is better than b) then b← , bqbit ←
21 for each update based on 
22 end //*for r*//
23 for each update based on b
24 end //*while*//
25 End

Fig. 1 Pseudo-code for QIEA

Table 1 Existing QIEA’s used
to solve variants of KP

Modifications Examples Problem type Maximum size
(n = items count;
m = knapsacks count)

Original QIEA (QIEA-o) [10,28] KP n = 500

Modified initialization of qubit
individuals in QIEA

[27] KP n = 500

[42] KP n = 500

[23] KP n = 500

[43] KP n = 500

Modification in termination criteria [27] KP n = 500

Modification in attractor, gate, etc. while
updating the qubit

[27] KP n = 500

[31] KP n = 500

[33] DKP n = 10,000

Modifying repair function based on
domain knowledge

[42] KP n = 500

Replacing local and/or global migration of
QIEA-o with other strategy

[44] KP n = 500

[45] KP n = 500

Incorporation of genetic operator mutation [33] DKP n = 10,000

Re-initialization of qubits [44] KP n = 500

Inclusion of domain knowledge in the
search process.

[33] DKP n = 10,000

QIEA-o with parallel implementation [29] KP n = 500

QIEA-o implementation on GPU [34] KP n = 250

KP simple knapsack problem, DKP difficult knapsack problems

quantum computing such as quantum bits (qubits), superpo-
sition of states and quantum gates. QIEAs were introduced
for the first time by Narayanan andMoore [8] in the 1990s to
solve the travelling salesman problem. Han and Kim [9,10]
proposed a practical QIEA having the characteristics as qubit

representation of individuals, Q-gate to guide the individ-
uals towards better solutions. Han [11] showed that the
inherent probabilistic mechanism of QIEAs result in good
balance between exploration and exploitation. Platel et al.
[12] showed that QIEAs are multi-model Estimation of Dis-
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tribution Algorithms (EDA). Zhang [13] categorized QIEAs
into three types viz. binaryObservation (bQIEAs), real obser-
vation (rQIEAs) and QIEA like algorithms (iQIEAs) and
presented a comparison to illustrate that QIEAs are better and
more robust than EDAs because QIEAs can solve a broader

Fig. 2 Initializing qubits based on concept of greedy solution and core
concept

range of problems using a smaller size of population. All
QIEAs use qubit as a probabilistic representation of individ-
uals and define a Q-gate as an evolutionary operator which
guides the individuals towards generation of solutions that
are better than their parents. The qubit representation has a
better characteristic of population diversity than other rep-
resentations [11,13] used in EAs. Zhang et al. [14] present
different Q-gates with empirical performance comparison.

QIEAs which are based on binary observation have been
favoured most by researchers. Zhang [13] has further cate-
gorised this type of QIEAs into original bQIEA (bQIEAo)
[10]; bQIEA with crossover and mutation (bQIEAcm)
[15–17]; bQIEA with a novel update method for Q-gates
(bQIEAn) [18]; and hybrid bQIEA (bQIEAh) [19–26].

Knapsackproblemshavebeen chosenbymany researchers
working on different QIEAs as a suitable example to inves-
tigate the performance of their “modified” version viz.,
bQIEAo [10,27–32], bQIEAcm [15–17], and bQIEAh [19–
24,33]. None of these implementations attempt to solve
problem instances of size more than 10,000 items.

Nowotniak and Kucharski [34] implemented a sequen-
tial version of QIEA on Intel Core i7 2.93GHz CPU and a
parallel version in GPU-based massively parallel computing
environment (NVidia CUDA™technology) with improved
rotation angles in quantum genes. Experiments on a single
knapsack problem of size 250 items only have been per-

Procedure RepairGreedy (x)
1 begin
2 knapsack-overfilled ← false
3 weight ← ∑ wjxj | j=(1,…,n)
4 if (weight >  C)
5 then knapsack-overfilled ← true
6 while (knapsack-overfilled) do
7 begin
8 select ith item from the knapsack having smallest profit by weight ratio        
9 xi ← 0   (i.e. remove ith item from knapsack)

10 weight← weight – wi

11 if (weight≤ C)
12 then knapsack-overfilled ← false
13 end
14 for each item j not in knapsack considered in decreasing order of profit by weight ratio do
15 begin
16 if (weight+wj ≤ C)
17 begin
18 xj ←1   (i.e. add jth item into knapsack)
19 weight← weight +wj

20 end 
21 end
22 end

Fig. 3 Pseudo-code for RepairGreedy

Fig. 4 State of qubits after a
few iterations of evolution.
Qubits are sorted such that profit
by weight ratio decreases from
left to right
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Fig. 5 Illustrating the process
of size reduction during
subsequent generations of QIEA

formed. The algorithm has been implemented on a system of
eight GPUdevices (4×Tesla T10GPU,GTX285, dual-GPU
GTX 295 and Tesla C2070 GPU) and run to 500 generations
in approximately 0.00034 s using a population of 10 quantum
individuals.

An exact dynamic programming method has been imple-
mented by Boyer et al. [35] on NVIDIA GPU architecture
(NVIDIA GTX 260 graphic card with 192 cores, 1.4 GHz).
The performance of the sequential implementation on Intel
Xeon 3.0 GHz and has been compared with the parallel. The
parallel implementation has been shown to solve randomly
generated correlated knapsackproblemsof size up to 100,000
elements in 289.21 s.

The performance of the QIEAs has not been studied on
KP instances having more than 10,000 items. Some DKP
instances have been studied by Patvardhan et al. [33]. But
Reilly [36] proved that these problems are similar and thus
are not so difficult. In this work some DKPs are selected that
have been proved to be difficult in actual practice [36–39].
An improved QIEA called QIEA-PSA (using initials of
authors P-Patvardhan, S-Sulabh and A-Anand) is presented.
The performance of QIEA-PSA is far better than QIEA in
terms of solution quality as well as time taken for conver-
gence on considered DKPs of size up to 290,000 variables.

Even a serial implementation of QIEA-PSA compares
favorably with a parallel implementation of an exact algo-
rithm [35]. A comparison, presented on benchmark KP
instances, shows that QIEA-PSA also outperforms the mod-
ified binary particle swarm optimization algorithm recently
proposed by Bansal and Deep [40].

The ideas incorporated in QIEA-PSA are applicable in
general and can also be used with profit for design of bet-
ter performing QIEAs for other similar and not so similar
problems.

The rest of the paper is organized as follows. The types of
difficult KPs considered in this work are explained in Sect. 2.
QIEA is introduced in Sect. 3. The improved QIEA-PSA is
presented in Sect. 4. Results of the experiments and conclu-
sions are presented in Sects. 5 and 6 respectively.

2 Difficult knapsack problems (DKPs)

Several groups of randomly generated instances of DKPs
have been constructed to reflect special properties that
may influence the solution process in [37,38]. In all these
instances the weights are uniformly distributed in a given
interval with data range R = 1000. The profits are expressed
as a function of the weights, yielding the specific properties
of each group.

Nine groups of problems described below are specified
as DKPs. The performance of QIEA on these problems has
been studied in [33].

• Uncorrelated data instances pj and wj are chosen ran-
domly in [1, R]. In these instances there is no correlation
between the profit and weight of an item.

• Weakly correlated instances Weights wj are chosen ran-
domly in [1, R] and the profits pj in [wj−R/10, wj+R/10]
such that pj ≥ 1. Despite their name, weakly correlated
instances have a very high correlation between the profit
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Procedure QIEA-PSA
1 Begin 
2 sort the items in problem in decreasing order of their profit by weight ratio
3 t ← 0, Corginal ← C
4 InitializeGreedy(Q(t))
5 Initialize the best solution b as the greedy solution of the given knapsack
6             set K ← Φ
7 while ( t<MaxIterations and C > 0.01 * Corginal)
8 Begin
9 t ← t+1
10 Make P(t) from Q(t)
11 RepairGreedy P(t)
12   copy P(t) to B(t)
10 for r from 0 to do
11 for s from 0 to do
12 Make P(s) from Q(t)
13 RepairGreedy P(s)
14 evaluate P(s)
15 if better than ) then
16 end //*for s*// 
18 if (  is better than ) then
19 if ( is better than b) then b , bqbit
20 Update based on
21 end //*for r*// 
22 Update based on b
23 for each item i in knapsack 
24 Begin 
25 if (bestqbit[i]>0.9) 
26 begin
27 K ← K U i
28 Reduce problem size by removing the item i
29 C ← C - wi

30 end
31 if (bestqbit[i]<0.1)
32 begin
33 Reduce problem size by removing the item i
34 end
35 end
36               end
37               for each item i of reduced problem
38 begin
39  if (b(i) is set) 
40   K ← K U i
41               end  
42 end

Fig. 6 Pseudo-code for QIEA-PSA

and weight of an item. Typically the profit differs from the
weight by only a few percent.

• Strongly correlated instances Weights wj are distributed
in [1, R] and pj = wj + R/10. Such instances correspond
to a real-life situation where the return is proportional to
the investment plus some fixed charge for each project.

• Inverse strongly correlated instances Profits pj are dis-
tributed in [1,R] and wj = pj +R/10. These instances are
like strongly correlated instances, but the fixed charge is
negative.

• Almost strongly correlated instances Weights wj are dis-
tributed in [1, R] and the profits pj in [wj + R/10 −
R/500,wj + R/10 + R/500]. These are a kind of fixed-
charge problems with some noise added. Thus they reflect
the properties of both strongly and weakly correlated
instances.

• Subset sum The profits and weights are same for all the
items.

• Even–odd subset sum Weights wj are randomly selected
from the set of even numbers in [1, R].The profit pj is same
as weight.

• Even–odd knapsack Weights wj are randomly selected
from the set of even numbers in [1, R]. pj = wj + R/10.

• Uncorrelated instances with similar weights Weights wj

are distributed in [10000, 10010] and the profits pj in [1,
100].

However, Reilly [36] observed that the induced correla-
tion is strong in the following types: weakly correlated,
almost strongly correlated, strongly correlated, subset sum,
inversely strongly correlated, even–odd and even–odd subset
sum problems. Therefore, all these instances are very similar.

Bounded strongly correlatedhas beendescribed as another
type of DKPs in [39].

Bounded strongly correlated Bounded instances are gen-
erated with w j uniformly random in [1, 1000] and p =
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Fig. 7 Showing density of qubits on values between 0 and 1 for various types of problem instances. It presents the trend in settlement of qubits (at
value close to 0 or 1) through the generations
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Fig. 7 continued

Fig. 8 Size reduction after the iteration observed for selected instances
of size 15,000 items

w j + 100. The bounds m j are uniformly random in [1, 10],
and the instance are transformed to a KP using the technique
described in [41], until n items are present.

Pisinger [38] constructed some types of KP instances with
small coefficients where state of the art exact algorithms per-
form badly. These are as follows.

• Spanner instances span (v,m): These instances are con-
structed such that all items aremultiples of a quite small set
of items—the so-called spanner set. The spanner instances
span (v,m) are characterized by the following three para-
meters: v is the size of the spanner set, m is the multiplier
limit, and finally any distribution (uncorrelated, weakly
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Fig. 9 Profits added
incrementally by improvements
applied on simple QIEA

Fig. 10 Box plots showing reduction in time taken due to improve-
ments applied on simple QIEA

correlated, strongly correlated, etc.) of the items in the
spanner set may be taken. More formally, the instances
are generated as follows: A set of v items is generated
with weights in the interval [1, R], and profits according
to the distribution.The items (pk,wk) in the spanner set are
normalized by setting pk := 2pk/m and wk := 2wk/m.
The n items are then constructed, by repeatedly choosing
an item (pk, wk) from the spanner set, and a multiplier is
randomly generated in the interval [1, m]. The constructed
item has profit and weight (a * pk; a * wk).

• Multiple strongly correlated instances mstr(k1, k2, d) :
These instances are constructed as a combination of two
sets of strongly correlated instances. Both instances have
profits pj := wj + ki where ki , i = 1, 2 is different for the
two instances.
The multiple strongly correlated instances mstr(k1, k2, d)
are generated as follows: the weights of the n items are
randomly distributed in [1, R]. If the weight wj is divisible
by d, then set profit to pj := wj + k1 otherwise set it to
pj := wj + k2.

Table 2 Various versions of QIEA mapped with the improvements
included in them

Improvements QIEA QIEA V1 QIEA V2 QIEA-PSA

Sorted input
and greedy
repair

× √ √ √

Greedy initialization
of qubit individuals
and best solution

× × √ √

Size reduction × × × √

According to Pisinger difficult instances could be obtained
with the parameters mstr(3R/10, 2R/10, d). Choosing d =
6 results in the most difficult instances, but values of d
between 3 and 10 can all be used.

• Profit ceiling instances pceil(d): These instances have the
property that all profits are multiples of a given parameter
d. The weights of the n items are randomly distributed in
[1, R], and the profits are set to p j = d

[
w j/d

]
. Pisinger

has experimentally found that taking d = 3 yields suffi-
ciently difficult instances.

Only sufficiently different and difficult problem instances
of KP are considered in this paper. These are as follows.

Type 1. Uncorrelated data instances
Type 2. Strongly correlated instances
Type 3. Bounded strongly correlated instances
Type 4. Multiple strongly correlated instances:
mstr(3R/10, 2R/10, 6).
Type 5. Profit ceiling instances: pceil(3)
Type 6. Spanner Instances: uncorrelated span(2,10)
Type 7. Spanner Instances: strongly correlated span(2,
10).
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Table 3 Average profits obtained using different versions of QIEA

Algo. version Problem type

1 2 3 4 5 6 7

QIEA 2,358,523 2,714,996.5 5,175,234.8 3,569,376.5 2,254,784.4 2,764,582.9 3,323,778.7

QIEA V1 3,495,745.1 2,858,587 5,452,654.6 3,992,098.2 2,257,710 3,499,206.3 3,414,674.4

QIEA V2 4,744,184.6 3,070,425.8 5,847,073.4 4,594,496 2,260,612.5 4,768,736.4 3,587,039.4

QIEA-PSA 4,744,182.1 3,070,425.5 5,847,073.7 4,594,495.8 2,260,612.5 4,768,734.7 3,587,031.4

Table 4 Average computing
times (ms) observed using
different versions of QIEA

Algo. version Problem type

1 2 3 4 5 6 7

QIEA 1648.9 1645 1645.9 1644.9 1644.6 1644.5 1646.2

QIEA V1 1674.3 1678.7 1669.9 1672.9 1663.4 1667.7 1671.5

QIEA V2 1399.5 1406.7 1410.7 1410.3 1372.1 1374.5 1389.6

QIEA-PSA 718.5 772.8 771.3 774.1 656.5 669.7 714.2

Table 5 Results for uncorrelated instances

Size (K) Profit Time

QIEA QIEA-PSA Gap % QIEA (ms) QIEA-PSA (ms) Gap %

10 1,592,880.5 3,157,580.4 49.55455 1091.2 469.6 56.96218397

30 4,648,369 9,487,718 51.00634 3263.6 1422.3 56.41923198

50 7,699,781.2 15,812,131.6 51.3043 5442.2 2374 56.37753444

70 10,729,274.2 22,127,795.9 51.51231 7596.4 3332.2 56.13451813

90 13,757,594.3 28,446,200.2 51.63643 9763.7 4281.2 56.15182373

110 16,790,093.6 34,769,640.6 51.71051 11,964.5 5231.8 56.27074034

130 19,809,372.3 41,089,609.3 51.78986 14,104.7 6265.5 55.57866982

150 22,833,427.6 47,401,780.4 51.83004 16,295.7 7129.9 56.24670735

170 25,847,625.1 53,730,282 51.89376 18,684.5 8078.2 56.76345167

190 28,886,369.9 60,058,768 51.90318 20,674.1 9043.7 56.25579099

210 31,904,191.8 66,365,561.3 51.92658 22,869.5 9997.6 56.28397096

230 34,915,549.5 72,678,697.6 51.95905 25,095.2 10,942.5 56.39598358

250 37,935,471.6 79,003,708.7 51.98267 27,403.2 11,841.5 56.78780052

270 40,946,787.8 85,337,687.5 52.01793 29,631.9 12,801.1 56.79939625

290 43,970,453.6 91,659,492.4 52.0285 31,930.6 13,787.2 56.82127697

3 Quantum-Inspired Evolutionary Algorithm
(QIEA)

QIEA uses quantum bits (qubits) as the smallest unit of infor-
mation for representing individuals. Eachqubit is represented
as qi = [αi βi ]T where αi and βi are complex numbers
representing probabilistic state of qubit so that | αi |2 is the
probability of state being 1 and | βi |2 is the probability of
state being 0 such that | αi |2 + | βi |2 = 1. When a qubit is
observed, the result fall into [0, 1] depending on the probabil-
ity defined by the qubit. For QIEA, αi and βi are considered
real without losing the generality. Han and Kim [10] pre-
sented a QIEA where Q(t) is the qubit population, P(t) is the

population of individual solutions, B(t) is the set of best solu-
tions corresponding to each individuals, C is the capacity of
the knapsack. Elements of Q(t) are initialized to value 1/

√
2.

Subsequently P(t) and B(t) are initialized by observing the
qubits of Q(t). The algorithm then iterates through following
steps till termination criterion is met:

• update Q(t) when the individual observed in P(t) does not
improve over the local best or global best individual in
B(t).

• observe Q(t) to form new P(t),
• select new best population B(t)
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A rotational Q-gate is used for updating the quantum bits
in Q(t). The qubit i in an individual of Q(t) is rotated by angle
� θi , proposed as 0.01π , either clockwise or anti-clockwise
depending on the corresponding bit in best individual is either
0 or 1. Han and Kim [10] have solved strongly correlated
knapsack problem using QIEA and show that the best variant
of QIEA converges within maximum of 1000 generations
which takes approx. 0.1 sec to solve problem of size 500
items. No comparison with optimal solution is reported.

Table 6 Average time and average FES taken to compute best solution
for uncorrelated instances

Size (K) QIEA QIEA-PSA

Time FES Time FES

10 1019.7 234.1 226.2 121.3

30 3048.6 234 8 2

50 5157.9 237.4 13.5 2

70 6672.7 220.2 19.8 2

90 8725.2 223.8 25.3 2

110 11,104.1 232.5 31.2 2

130 13,525.4 240.2 37.8 2

150 14,981.8 230.4 43.1 2

170 16,317.7 218.9 49 2

190 18,626.8 225.8 55.1 2

210 20,593.8 225.6 61.6 2

230 23,816.4 237.7 67.5 2

250 26,277.8 240.4 77.4 2

270 27,744.5 234.7 84.1 2

290 29,715.2 233.1 90.2 2

The QIEA implementation used in the present work is
given in Fig. 1. The notations used are as follows.

Q(t): Qubit population in tth iteration.
P(t): population of binary solutions in tth iteration.
B(t): population of best solutions in tth iteration.
qtj: jth individual in Q(t).

ptj: jth individual in P(t).

btj: jth individual in B(t).
b: best solution observed so far.
MaxIterations: maximum number of iteration.
n: Number of items to be considered in problem.
t: the current iteration.

Qubits in Q(t) are initialized with 1/
√
2 and best binary

solution b with zeroes (lines 1 and 2).
The QIEA iterates Maxiterations times through the
remaining tasks described in lines 4–24.
In every iteration individuals of Q(t) are observed and the
solutions are repaired to make them feasible (lines 7 and
8).
B(t) and P(t) are initialized by these feasible solutions
(line 9).
The following tasks are then repeated η1 times (lines 10–
22).

• The qubits in Q(t) are collapsed and repaired η2 times
to form feasible solutions in P(s) and the corresponding
best solutions are retained in P(t) (lines 11–18).

• Individual at every position in B(t) is replaced by corre-
sponding individual in P(t) if found better (line 19).

• The best solution from among b and B(t) is moved into
b (line 20).

Table 7 Results for strongly
correlated instances

Size (K) Profit Time

QIEA QIEA-PSA Gap % QIEA (ms) QIEA-PSA (ms) Gap %

10 1,814,672 2,048,052 11.39531 1087.6 518 52.3726

30 5,423,535 6,143,630 11.72104 3264.3 1552.2 52.44873

50 9,033,409 10,242,349 11.80344 5448 2586.3 52.52665

70 12,636,373 14,336,783 11.86051 7582.9 3615.9 52.31469

90 16,243,048 18,430,675 11.86957 9771.1 4701.3 51.8854

110 19,843,458 22,524,755 11.90381 11,972.4 5722.5 52.20169

130 23,442,926 26,616,784 11.92429 14,111.2 6858.9 51.394

150 27,041,275 30,709,519 11.94498 16,307.4 7843.1 51.90442

170 30,652,004 34,806,943 11.9371 18,596.8 8875.4 52.27338

190 34,247,899 38,898,425 11.95556 20,685.4 9965 51.82613

210 37,844,768 42,987,555 11.96343 22,865.3 11,028 51.76961

230 41,452,441 47,085,228 11.96297 25,084 12,068 51.88969

250 45,048,621 51,177,553 11.97583 27,380 13,055.3 52.31756

270 48,647,077 55,269,189 11.98157 29,702.8 14,129 52.43198

290 52,258,454 59,369,020 11.9769 31,918.2 15,221.5 52.31066
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• Local update: Each individual in Q(t) is updated based
on the corresponding best solution in B(t)(line 21).

Each iteration restarts after updating the individuals in
Q(t) globally (line 23) based on the best solution observed
so far.

Several attempts have been made to solve variant(s) of KP
using QIEAs. Table 1 lists various attempts to design QIEAs
in literature to solve KP instances.

Table 8 Time and FES taken to compute best solution for strongly
correlated instances

Size (K) QIEA QIEA-PSA

Time FES Time FES

10 1005 231.5 352.2 170.5

30 3015.7 231.5 1307 211

50 5104 234.8 2264.7 219.4

70 6988.7 231 3206.4 222.3

90 8830.8 226.5 3860.7 206.4

110 10,888.7 228 5138.4 224.7

130 13,218.8 234.8 6336.2 231.5

150 14,969.9 230 7228.3 230.8

170 17,464.8 235.4 8143.6 229.9

190 18,956.8 229.6 9041.2 227.4

210 20,655.4 226.3 10,036.5 228

230 24,053.5 240.3 11,145 231.2

250 24,434.3 223.6 12,116.2 232.7

270 28,227.2 238.2 12,949.5 229.7

290 29,515.9 231.6 14,016.2 230.6

4 QIEA-PSA

Several new ideas have been incorporated in QIEA-PSA for
enhanced performance. Details are as follows.

I. Simplified Input The items are sorted in the decreas-
ing order of their profit by weight ratio so that
the items can be assigned the probabilities of their
inclusion in the solution accordingly in order of
decreasing probabilities.

Table 10 Time and FES taken to compute best solution for bounded
strongly correlated instances

Size (K) QIEA QIEA-PSA

Time FES Time FES

10 1036.1 238.5 367 179.2

30 3031 229.1 1349.9 218.3

50 4915.6 226.4 2343.9 224.4

70 6966.4 229.8 3349.7 230.2

90 8794.2 226 4294.1 228.4

110 11,310.8 235.9 4729.1 205.8

130 12,828.6 227.7 6299.3 230

150 15,247.1 234.1 7235.2 230.1

170 16,964.4 230.1 8373.3 235

190 18,823 228.2 9145.3 229

210 21,404.5 234.5 10,171.5 230.1

230 23,587.7 235.6 11,229 232.3

250 25,748 236.1 11,895.9 227.2

270 27,585.9 232.8 12,973.9 229.4

290 29,651.8 233.1 14,018.3 229.9

Table 9 Results for bounded strongly correlated instances

Size (K) Profit Time

QIEA QIEA-PSA Gap % QIEA (ms) QIEA-PSA (ms) Gap %

10 3,450,445.2 3,891,364.5 11.33241761 1088.2 514 52.76545428

30 10,322,412.7 11,678,451.2 11.61187546 3316.6 1549.3 53.281786

50 17,141,647.4 19,434,364 11.79724826 5441.9 2618.2 51.88847058

70 23,976,306.3 27,191,182.2 11.82347831 7598.8 3645 52.03185893

90 30,804,942.7 34,949,992.8 11.86010355 9760.1 4710 51.74205823

110 37,657,680 42,734,418.1 11.87991752 12017.5 5773.5 51.95512079

130 44,498,663.1 50,500,644.5 11.885104 14,118.8 6860.8 51.40604771

150 51,322,678.3 58,264,346.9 11.91419878 16,322.8 7875.1 51.75305479

170 58,160,564.7 66,033,115.4 11.92219697 18,476.8 8932.3 51.65647091

190 64,953,443.3 73,770,442.7 11.95200214 20,686.4 10,009.9 51.61121828

210 71,817,548.7 81,557,575 11.94256899 22,882.7 11,074 51.60525891

230 78,640,981.9 89,316,793.9 11.9528028 25,073.8 12,114.7 51.68367612

250 85,497,539.5 97,099,796.8 11.94882427 27,316.8 13,121.2 51.9664945

270 92,314,713.4 104,848,407.9 11.95412868 29,682.6 14,178.1 52.23401936

290 99,136,949.7 112,604,462.5 11.96003323 31,877.9 15,270.4 52.09700475
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Table 11 Results for multiple
strongly correlated instances

Size (K) Profit Time

QIEA QIEA-PSA Gap % QIEA (ms) QIEA-PSA (ms) Gap %

10 2,389,952 3,063,951 21.99757 1087.1 517.2 52.42373

30 7,116,975 9,193,808 22.58945 3258.8 1562.8 52.04377

50 11,839,629 15,327,529 22.75582 5445.1 2589.4 52.44473

70 16,548,073 21,456,511 22.87624 7589.8 3648.3 51.93151

90 21,258,698 27,583,342 22.92926 9773.5 4708.8 51.82063

110 25,967,738 33,710,530 22.96848 12,006.2 5760.1 52.02272

130 30,674,366 39,838,049 23.00235 14,143.6 6802.6 51.90292

150 35,377,325 45,964,429 23.03326 16,319.8 7861.3 51.82972

170 40,090,334 52,095,172 23.04405 18,475.3 8933.5 51.64627

190 44,791,399 58,219,343 23.0644 20,665.6 9982.4 51.69547

210 49,493,808 64,345,406 23.08106 22,905.7 11,033.6 51.83027

230 54,203,261 70,473,608 23.08715 25,148.1 12,098.9 51.88928

250 58,912,471 76,601,066 23.09185 27,335.4 13,084.1 52.13499

270 63,608,767 82,725,872 23.10899 29,679.1 14,160.2 52.28886

290 68,320,024 88,859,579 23.11462 31,831.6 15,244.4 52.10903

II. Initialising the qubits using a good heuristic The
qubits are collapsed to 0 or 1 state on observa-
tion with probabilities defined by | αi |2 and | βi |2
respectively. They thus reflect the probability of the
corresponding item being included in the solution.
The qubits are initialized to values decreasing from
0.95 to 0.2 for items sorted in the decreasing order
of the profit by weight ratios in such a way that the
list of items is divided into three parts where first
and third parts have qubits closer to 1 and 0 respec-

Table 12 Average time and average FES taken to compute best solution
for multiple strongly correlated instances

Size (K) QIEA QIEA-PSA

Time FES Time FES

10 965.7 222.5 383.2 185.6

30 3057.8 235 1385.4 222

50 5216.7 240.1 2354.4 227.9

70 6765.5 223.3 3380 232.3

90 9037.5 231.7 4326.3 230.3

110 10,945.9 228.5 5212.7 226.9

130 12,958 229.6 6396.1 235.6

150 15,427.8 236.7 5880.2 188

170 17,640.5 239.2 6712.6 188.8

190 18,291 221.7 7422.1 186.9

210 21,822 238.6 9202.2 209.2

230 22,357.8 222.9 10,096.8 209.5

250 25,480.3 233.5 10,850.3 208.1

270 28,010.4 236.4 10,621.9 188.4

290 29,976.6 235.9 12,892.2 212.3

tively while the second part contains qubits of value
around 1/

√
2 (Fig. 2). This implies that elements in

second portion take part in the QIEA-PSA evolution
process for a longer duration. Elements in the first
and third parts are removed early as a result of size
reduction explained in modification number V.

III. Using a known good solution as the initial best solu-
tion for further improvement The best solution b is
initialized to the greedy solution of the problem. Till
some better solution is found the qubits are rotated
towards this best solution.

IV. Modifying the repair to speed up the evolutionRepair
is used to correct the solution after Q-bits are col-
lapsed to make the resultant solution feasible. In the
repair step of the QIEA-PSA, named RepairGreedy,
the solution is improved apart from making it feasi-
ble. When capacity constraint is violated, items are
removed from knapsack in such a way that the items
with lesser profit by weight ratio are chosen. Sim-
ilarly an item with larger profit by weight ratio is
chosen, when required to fill in the knapsack. Figure
3 presents the pseudo-code for RepairGreedy.

V. Size reduction QIEA keeps rotating the qubits of
individuals towards the best solution it finds during
evolution. Due to this property the qubits of items
lying in the first part gradually acquire values very
close to 1 and that of items in third part acquire val-
ues closer to zero as illustrated in Fig. 4. At this
point, the probability of rotating these qubits in the
opposite direction during further evolution becomes
almost negligible. Continuing with such qubits in
subsequent iterations is futile.
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Table 13 Results for profit
ceiling instances

Size (K) Profit Time

QIEA QIEA-PSA Gap % QIEA (ms) QIEA-PSA (ms) Gap %

10 1,504,390 1,508,226 0.254329 1082.9 437 59.64515

30 4,511,274 4,523,104 0.261546 3261.1 1307.9 59.8925

50 7,521,739 7,541,601 0.263373 5449.9 2179.3 60.0113

70 10,527,660 10,555,613 0.264811 7589.2 3059.1 59.6914

90 13,534,130 13,570,181 0.265668 9795.1 3924.6 59.93262

110 16,540,128 16,584,208 0.265797 11,974.2 4795.1 59.95354

130 19,543,200 19,595,383 0.266306 14,114.6 5666.3 59.85502

150 22,547,705 22,607,951 0.266485 16,385.9 6538 60.0934

170 25,557,020 25,625,361 0.266695 18,483.3 7414.8 59.88374

190 28,560,587 28,637,065 0.267057 20,664 8295.3 59.85616

210 31,560,192 31,644,801 0.267371 22,879.8 9162.3 59.95442

230 34,571,342 34,664,006 0.267323 25,108.2 10,047.9 59.98141

250 37,574,880 37,675,666 0.267511 27,435.5 10,874.4 60.3634

270 40,577,519 40,686,350 0.267488 29,711.5 11,755.5 60.43435

290 43,590,190 43,707,058 0.267388 31,780.8 12,672.8 60.12432

The qubit individual ‘bqbit’, stores the qubit string
that generates the best individual on collapse. When
the qubits in bqbit cross the stipulated thresholds, the
corresponding items are permanently taken as being
selected (for qubit value >0.9) or being outright
rejected (for qubit value <0.1) and hence removed
from the search process. Figure 5 illustrates this
reduction process.

VI. Re-initializing population of local best solutions In
QIEA-PSA the population of best solutions is reini-
tialized whenever the size of the problem is reduced.
This is required because the problem changes after
the size reduction. This is also beneficial in improv-
ing the exploration capability of the algorithm as it
increases the diversity in the population.

The pseudo-code for QIEA-PSA is presented in the Fig. 6.
The set of integers in range [1..n], K represents the knapsack
solution, such that i ∈ K if ith item is included in solution.
The notation is the same as used in Sect. 3.

The maximum number of iterations in algorithm is con-
trolled using a global constant, MaxIterations. When using
size reduction, the maximum number of iterations, till size
of the problem reduces to 10 % of the original, can be found
easily for a set of problems. The size of population in the
presented QIEA-PSA, can be chosen based on the difficulty
of instance to be solved.

The algorithm starts by sorting the input in descending
order of profit by weight ratio (lines 2 and 3). Qubits in Q(t)
are initialized as described earlier and best binary solution b
with greedy solution (lines 4 and 5). It iterates Maxiterations
times (or till the capacity of reduced problem is to less than

Table 14 Average time and average FES taken to compute best solution
for profit ceiling instances

Size (K) QIEA QIEA-PSA

Time FES Time FES

10 1004.5 232.4 2 2

30 2894 222.2 5.7 1.7

50 5062.2 232.5 9.8 2

70 7160.7 236.3 14.5 2

90 8951.2 228.9 19.1 2

110 10,740.9 224.7 22.9 2

130 13,267.4 235.5 27.1 2

150 15,513.8 237 31.4 2

170 16,288.8 220.8 35.3 2

190 18,111 219.8 39.8 2

210 21,053.3 230.5 43.1 2

230 23,002.6 229.5 48 2

250 25,489.4 232.8 59 2

270 25,845.5 217.9 63.9 2

290 29,275.7 230.8 68.8 2

1 percent of original capacity), through the tasks described
in the lines 8–36. In every such iteration individuals of Q(t)
are observed and the solutions are repaired using the Repair-
Greedy function tomake them feasible (lines 10 and 11). Size
reduction is carried out in lines 23–35. Finally the solution is
formed (lines 37–41). If the problem size after several reduc-
tions becomes very small (line 7) (capacity of reduced knap-
sack is smaller than 0.01∗Corginal) the evolution terminates.
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Table 15 Results for Spanner
uncorrelated instances

Size (K) Profit Time

QIEA QIEA-PSA Gap % QIEA (ms) QIEA-PSA (ms) Gap %

10 1,857,567 3,178,895 33.92462 1083.5 444 59.02835

30 5,458,867 9,543,950 34.95158 3254.8 1333.6 59.02794

50 9,079,506 15,912,516 35.07301 5453.1 2217.3 59.35265

70 12,668,283 22,255,737 35.20911 7589.7 3115.6 58.95198

90 16,228,552 28,607,802 35.37134 9840.8 4007.3 59.28238

110 19,826,800 34,956,123 35.38168 11,959.6 4884.2 59.16397

130 23,405,716 41,302,860 35.44491 14,109.1 5769.8 59.10415

150 26,956,965 47,650,647 35.50569 16,419.1 6658.8 59.41781

170 30,523,690 53,987,020 35.54556 18,479.1 7551.6 59.1305

190 34,082,085 60,321,704 35.57091 20,674.9 8440.1 59.18256

210 37,636,247 66,692,691 35.6174 22,867.6 9323.4 59.23339

230 41,201,577 73,042,256 35.63414 25,135.7 10,225.2 59.32259

250 44,757,508 79,400,409 35.66452 27,386.4 11,059.7 59.61763

270 48,317,001 85,742,976 35.68197 29,726.6 11,962.1 59.7672

290 51,905,431 92,100,412 35.67552 31,844.7 12,876.4 59.56585

Table 16 Average time and average FES taken to compute best solution
for spanner uncorrelated instances

Size (K) QIEA QIEA-PSA

Time FES Time FES

10 969.3 224.1 2 1.7

30 2952 227.3 5 1.3

50 4986.5 229 9 1.6

70 7162.7 236.4 13.1 1.7

90 9162.6 233.3 16.4 1.6

110 10,928.7 229 20.2 1.7

130 13,035.1 231.4 24.2 1.7

150 15,365.8 234.5 28 1.7

170 17,212.4 233.4 31.5 1.7

190 18,909.5 229.1 35.2 1.7

210 20,999.5 230.2 39.5 1.7

230 22,206.9 221.4 43.5 1.7

250 24,699.6 226.1 49.2 1.7

270 25,958.1 218.8 369.4 9.1

290 29,162.1 229.6 471.7 10.8

5 Results and discussion

QIEA-PSA has been tested with population sizes 5, 10,
20 and 30 and MaxIterations as 5, 10 and 20. The best
combination of parameters found experimentally is popu-
lation size 5 and MaxIterations 10. The value of each η1

and η2 is empirically set to 5. Due to initialization with a
good greedy solution and subsequent size reduction, exe-
cuting QIEA-PSA with larger populations or for more than
10 iterations has not resulted in much gain in profit as

compared to increase in computation cost for the simpler
instances (those considered up to Sect. 5.3). A larger popula-
tion is taken for benchmark problem instances considered in
Sect. 5.4.

All of the experiments are doneonRedHatLinux(RHEL6)
operating system running on Intel®Xeon®Processor E5645
having specifications as 12M Cache, 2.40 GHz, 5.86 GT/s
Intel®QPI. Problems are generated using “Advanced Gener-
ator” [46]. The parameter R is taken as 1000 and the capacity
of the knapsack is chosen to be 30 percent of the sum of the
weights of all the items in the problem.

Sample runs on randomly generated problems of size
15,000 items of each type selected in Sect. 2 are used for
presentation of the results in this section.

The experiments conducted to study the effects of vari-
ous modifications introduced in QIEA-PSA are discussed in
Sect. 5.1. Results with discussion for various types of KP
instances considered here (mentioned as Type 1 to Type 7 in
Sect. 2) are presented in Sect. 5.2. The results on instances
used by Boyer et al. [35] are compared in Sect. 5.3. The com-
parison with modified binary particle swarm optimization of
Bansal and Deep [40] is presented in Sect. 5.4.

5.1 Effect of various modifications in QIEA

Figure 7a–g shows the status of each qubit at initialization
and their status after 5th and 10th iterations for various types
of problem instances. The qubit number (numbers ranging
from 1 to 15,000 representing the corresponding item in the
sorted order according to pi/wi) is depicted on the x-axis
whereas the qubit value is on the y-axis. The darkest line is
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Table 17 Results for Spanner
strongly correlated instances

Size (K) Profit Time

QIEA QIEA-PSA Gap % QIEA (ms) QIEA-PSA (ms) Gap %

10 2,213,823 2,387,059 7.45602 1083.5 474.8 56.17808

30 6,646,099 7,178,918 7.616324 3270.9 1422.2 56.52304

50 11,065,365 11,962,272 7.699963 5431.7 2380.7 56.17457

70 15,491,982 16,744,779 7.679383 7593.3 3327.2 56.18478

90 19,918,379 21,538,025 7.716908 9802.4 4268.7 56.45757

110 24,352,913 26,334,172 7.719347 11,952.3 5243.6 56.12459

130 28,764,847 31,108,665 7.730174 14,114 6160.3 56.35519

150 33,185,424 35,892,919 7.740749 16,320.7 7109.7 56.44658

170 37,601,411 40,672,217 7.746722 18,486.5 8051.9 56.44568

190 42,020,873 45,456,137 7.753551 20,690.6 9005.9 56.47209

210 46,444,466 50,237,735 7.745682 22,888.8 9955.9 56.50334

230 50,856,682 55,014,811 7.753631 25,100 10,841.5 56.81114

250 55,277,842 59,801,699 7.76065 27,343.6 11,793 56.87636

270 59,687,080 64,576,576 7.767421 29,690.1 12,766.7 56.99554

290 64,110,863 69,362,999 7.768457 31,883.5 13,728.5 56.94495

Table 18 Average time and average FES taken to compute best solution
for spanner strongly correlated instances

Size (K) QIEA QIEA-PSA

Time FES Time FES

10 985.2 227.8 16.3 10.9

30 2992.8 229.2 99.1 21

50 4962 228.8 168.5 21.4

70 7180.9 237 169.5 15.7

90 8238.1 210.7 115.1 8.5

110 10,177.3 213.5 271 15.7

130 13,078.9 232.2 187.1 9.2

150 15,139.1 232.4 219.8 9.8

170 17,158.3 232.6 652.4 23.4

190 17,763.2 215.2 237.7 8.1

210 20,999.3 229.8 606.5 17.8

230 23,144.9 231.1 675.1 19.2

250 24,391.8 223.6 1007 26

270 28,083.9 237.1 722 17.5

290 30,645.4 240.8 851.8 19.1

for the initialization and the lightest line for the status after
the 10th iteration.

The following points can be discerned.

(i) In all the cases the qubits initialized close to 1 (close to
0) move further towards 1 (0).

(ii) In case of strongly correlated, bounded strongly corre-
lated and multiple strongly correlated type instances the
qubits go through considerable turbulence (beingupdated

towards 0 and towards 1 several times) before they settle.
This is evidenced by the patches in the middle portion of
the graph. This also indicates that better solutions are
found several times during the search in which many
items get changed again and again.

(iii) In other cases the qubits move relatively smoothly
towards their respective final positions within a few iter-
ations.

Figure 8 illustrates the effect of size reduction on various
types of DKP instances. It also justifies the choice of 10 for
MaxIterations as the problem size reduces drastically by the
10 iteration.

As described in Sect. 4, several modifications have been
made in the simple QIEA to obtain QIEA-PSA. Table 2 spec-
ifies the various versions of QIEA formed along the way.

The development of algorithm starts from basic QIEA,
QIEAV1 is considered as the second step followed by QIEA
V2 and finally QIEA-PSA.

Tables 3 and4 shows the averagevalues of profits and com-
puting times observed over 10 randomly generated problem
instances of each type of size 15,000 items.

Figure 9 shows the incremental benefit in the quality of
solution with incorporation of each improvement using the
stacked bar graphs for different types of problems. Different
types of problem considered here are listed at the end of
Sect. 2. The size reduction does not affect the quality of
solution. Therefore, profit values provided by QIEA-PSA
and QIEA V2 are same and not plotted separately.

Figure 10 shows the reduction of time taken by the
algorithm due to each improvement incorporated using the
box-plot diagrams.
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Fig. 11 Box plots comparing
gap % in Profit between QIEA
and QIEA-PSA for various
types of problems

Fig. 12 Box plots comparing
the gap % in Time between
QIEA and QIEA-PSA for
various types of problems

Fig. 13 Box plots showing range of time taken on average to compute
best solution for all problems by QIEA-PSA

The following points emerge from Tables 3 and 4 and
Figs. 9 and 10:

(i) All of the ideas ofmodification viz., sorted input, greedy
repair, greedy initialization of qubit individuals and best
solution contributed to improvement in the quality of the
solutions obtained. The size reduction does not affect
the quality of solution.

(ii) The size reduction results in a major reduction of time
taken by QIEA-PSA.

(iii) Initialization of qubit individuals and best solution
based on greedy heuristic contributed to reduction in
time taken by algorithm, apart from improving the qual-
ity of solution.

(iv) QIEA-PSA provides substantially better results than
QIEA on all problem types.

(v) It does so in substantially lesser times than QIEA (less
than 50 % of the times required by QIEA).

QIEA V1 is very similar to enhanced QIEA of Patvardhan
et al. [33]. Thus, QIEA-PSA provides better results than
existing QIEAs.

5.2 Results and discussion for various types of DKP
instances

The results for different types of DKP instances as listed at
the end of Sect. 2 (Type 1 through Type 7) are presented for
problem sizes ranging between 10,000 and 290,000 in Tables
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Table 19 Time taken by QIEA-PSA till termination for problems of
size 15,000

Problem QIEA-PSA
Time (ms)
for size 15K

Rank

1. Uncorrelated instances 718.5 2

2. Strongly correlated instances 772.8 1

3. Bounded strongly corr. instances 771.3 1

4. Multiple strongly corr. instances 774.1 1

5. Profit ceiling instances 656.5 3

6. Spanner instances: uncorr. 669.7 2

7. Spanner instances: strongly corr. 714.2 2

Ranking of the problems based on the time taken by QIEA PSA to
compute best solution

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18. Average
of profit and computing times taken till termination for 10
randomly generated instances are shown in Table 5, 7, 9, 11,
13, 15, 17. The profit and computing times obtained using
QIEA-PSA are compared with QIEA. Gap % between two
values of profit (obtained using QIEA and QIEA-PSA) or
two values of computing times is calculated as

gap % = (|value1 − value2|/Max(value1, value2)) ∗ 100

Average of gap % (over 10 instances) between profits
obtained from QIEA and QIEA-PSA and average of gap %
between time taken by QIEA and QIEA-PSA is also pre-
sented for problems of size from 10K to 290K. The average
of time and function evaluations (FES) taken to compute best
solution for 10 randomly generated instances are shown in
Tables 6, 8, 10, 12, 14, 16, 18.

The box-plots in Fig. 11 present the comparison of gap %
in profit observed between QIEA and QIEA-PSA for differ-
ent problem types based on results in Tables 5–18. Similarly
the box plots of Fig. 12 present the comparison of gap % in
time taken for different problem types.

A large gap % in profits indicates that QIEA-PSA found
much better solution thanQIEA. This is becauseQIEA found
solution far from optimal and so QIEA-PSA had consider-
able scope for improvement. Further a larger gap % in time
indicates that QIEA-PSA converged much faster than QIEA
either due to faster setting of qubits or due to quick reduction
in size.

Followingobservations aremade from the results inTables
5–18.

• QIEA-PSA outperforms the simple QIEA in terms of the
quality of solutions and time taken to compute them for
all types of KP instances considered.

• The problem types considered are ordered in decreasing
order of gap % in solution quality as follows.

Table 20 Comparison of results on instances [47] used by Boyer et al.
[35] with QIEA-PSA

Size Avg. gap % Computing times (s)

QIEA-PSA Boyer et al.

10,000 7.37994E−05 0.6461 3.06

20,000 3.51194E−05 1.2851 11.97

30,000 5.73257E−05 1.9232 26.57

40,000 1.57768E−05 2.5592 47.43

50,000 2.24344E−05 3.2042 73.55

60,000 2.74802E−05 3.8638 105.93

70,000 1.30232E−05 4.4801 143.98

80,000 4.29929E−05 5.1528 183.15

90,000 1.75213E−05 5.8065 238.57

100,000 2.52493E−05 6.4328 289.21

(i) Uncorrelated instances.
(ii) Spanner uncorrelated instances
(iii) Multiple strongly correlated instance.
(iv) Strongly correlated and bounded strongly correlated
(v) Spanner strongly correlated instances
(vi) Profit ceiling type of instances

• The problem types considered are ordered in decreasing
order of gap % in computation time as follows

(i) Profit ceiling instances
(ii) Spanner uncorrelated instances
(iii) Spanner strongly correlated instances.
(iv) Uncorrelated instances.
(v) Strongly correlated, bounded strongly correlated and

Multiple strongly correlated.

• Thus, QIEA-PSA provides good solutions in lesser time
even for those problem types for which QIEA does not
provide good solutions. For those types for which QIEA
provides good solutions, QIEA-PSA provides similar or
better solutions in much lesser time.

• Time taken to reach best solution is almost same as time
taken till termination in case of QIEA but it is much less
in case of QIEA-PSA.

• FES taken to compute the solutions is quite less in case of
QIEA-PSA as compared to QIEA. Moreover each FES
in QIEA-PSA take lesser time as compared to QIEA as
QIEA-PSA evaluate instances of reduced size after each
iteration.

• Based on range of time taken on an average by QIEA-
PSA to compute best solution for problems of all sizes
(Fig. 13) and time taken by QIEA-PSA to solve instances
of size 15,000, a difficulty ranking of problem types is
presented in Table 19. The three problem types viz.,
strongly correlated, bounded strongly correlated, and
multiple strongly correlated are ranked as most difficult.
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Table 21 Comparing average
profit values using MBPSO and
QIEA-PSA for set-I of KP
instances

Example MBPSO QIEA-PSA Example MBPSO QIEA-PSA

ks_8a 3,924,400 3,924,400 ks_16d 9,337,915.6 9,343,887.8

ks_8b 3,813,669 3,813,669 ks_16e 7,764,131.8 7,755,224.2

ks_8c 3,347,452 3,347,452 ks_20a 10,720,314 10,727,049

ks_8d 4,187,707 4,187,707 ks_20b 9,805,480.5 9,818,261

ks_8e 4,954,571.7 4,955,555 ks_20c 10,710,947 10,712,473

ks_12a 5,688,552.4 5,688,757.3 ks_20d 8,923,712.2 8,928,880.8

ks_12b 6,493,130.6 6,498,597 ks_20e 9,355,930.4 9,357,767

ks_12c 5,170,493.3 5,170,626 ks_24a 13,532,060 13,549,094

ks_12d 6,992,144.3 6,992,404 ks_24b 12,223,443 12,233,713

ks_12e 5,337,472 5,337,472 ks_24c 12,443,349 12,448,780

ks_16a 7,843,073.3 7,850,983 ks_24d 11,803,712 11,813,578

ks_16b 9,350,353.4 9,352,998 ks_24e 13,932,526 13,940,099

ks_16c 9,144,118.4 9,151,147

The profit ceiling is ranked easiest and remaining prob-
lems are ranked as average on difficulty level. Similar
observations were also made in Sect. 5.1 from graphs of
Fig. 7.

• Strongly correlated, bounded strongly correlated, and
multiple strongly correlated are found equally harder in
both, the QIEA and the QIEA PSA. All of them showed
improvement in profit of around 10 % with reduction in
time of almost 52 %. Let’s refer them as the trio in the
following discussion.

An analysis of the above observation yields the following
points.

• ForUn-correlated andSpannerUncorrelatedbothgap%
(time and profit) are high. It means they are very dif-
ficult for QIEA but very easy for QIEA-PSA. That is
because searching for good solution of these problems is
directionless in simple QIEA where as the heuristic pro-
vides better focus to the search process in QIEA-PSA.

• Spanner Strongly Correlated showed profit increment of
around 10 % which is obtained faster in QIEA-PSA.
Therefore, they are easier than the trio. The reason is
that many elements in these are of similar weights and
profits and so the QIEA search and local search method
finds good solutions in such a solution space faster. Thus
this problem is a bit easier in QIEA than the trio while
too much easier in QIEA-PSA than the trio.

• For profit ceiling the gap % in profit is not high but that
in time is quite high i.e. they are easier than the trio.
Here, values of profit and weight for each item are sim-
ilar. Many items have same profit but slightly different
weights. So finding good solution in such a search space
is easier. Further the greedy heuristic makes the search

easier. These problems are very easy for QIEA but still
easier for QIEA-PSA.

5.3 Benchmark instances in Boyer et al. [35]

The QIEA-PSA is used to solve the instances [47] used by
Boyer et al. [35] to report the performance of their paral-
lel implementation of exact dynamic programming based
algorithm. Table 20 illustrates the comparison of average
time obtained for 10 instances using serial implementation
of QIEA-PSA with that obtained using parallel implemen-
tation of Boyer et al. Average gap % is calculated between
profit obtained usingQIEA-PSA and the optimal value for an
instance as ((Optimal Profit − QIEA-PSA Profit) / Optimal
Profit) *100. It is clear that QIEA-PSA gives nearly optimal
values in much lesser computation times than the parallel
implementation of Boyer. All constants of QIEA-PSA are
set to values as mentioned in the beginning of Sect. 5.

5.4 Benchmark instances in Bansal and Deep [40]

Bansal and Deep [40] solved the benchmark KP instances
using their Modified Binary Particle Swarm Optimization
(MBPSO). The population size for these instances in QIEA-
PSA is set to 4000. Two sets of instances, first containing 25
instances is taken from http://www.math.mtu.edu/_kreher/
cages/Data.html and the second containing 6 instances is
obtained directly from the authors. Table 21 and 22 presents
the comparison of results obtained using MBPSO with
QIEA-PSA for set I and set II of KP Instances.

The values of gaps in weight of selected items frommaxi-
mum capacity and the values of maximum profit observed in
QIEA-PSA are same as in MBPSO for set-I of KP instances,
so comparison is presented only on the basis of average of
profit obtained over 100 runs. The QIEA-PSA provides bet-
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Table 22 Comparison between
MBPSO and QIEA-PSA based
on results for set-II of KP
instances

Example Size Optimal Algorithm SR AFE AE LE Std dev

1 10 295 MBPSO 100 543 0 0 0

QIEA-PSA 100 1136.32 0 0 0

2 20 1024 MBPSO 100 2952 0 0 0

QIEA-PSA 100 511.35 0 0 0

3 50 3112 MBPSO 66 62,212 0.68 0 1.4274

QIEA-PSA 100 1 −2 −2 0

4 100 2,683,223 MBPSO 50 241,805 284.03 0 325.2135

QIEA-PSA 0 279,029.3 5428.28 1760 955.704

5 200 5,180,258 MBPSO 0 600,000 872.74 25 432.8804

QIEA-PSA 0 543,228.3 1276.41 189 442.6333

6 500 1,359,213 MBPSO 0 1,500,000 1248.96 586 275.2432

QIEA-PSA 100 114,041.7 0 0 0

Instance 3 we received from authors is possibly incorrect since initialized profit value in QIEA-PSA itself is
more than given optimal

ter profits on an average over 100 runs than MBPSO for all
instances except instance ks_16e.

For set-II of instances the optimal profit is known. Table
22 present a comparison on the basis of SR (success rate),
AFE (average function evaluations), AE (average error), LE
(least error) and StdDev (standard deviation in profit) over
100 runs for each instance. The QIEA-PSA performs sig-
nificantly better on instances 2 and 6. The performance of
two is competitive for instances 1 and 5. The instance 3
obtained from authors seems to have some error since the
value obtained in QIEA-PSA for initialization of best solu-
tion itself is better than the optimal value mentioned.

Thus, QIEA-PSA performs better than MBPSO on the
basis of quality of solutions provided for simple knapsack
problems.

6 Conclusions and future work

An improved quantum inspired evolutionary algorithm,
dubbed QIEA-PSA, is presented. The modifications intro-
duced here are as follows, initializing and repairing the
collapsed qubit individuals based on information provided
by heuristic for the instance, reducing the problem size and
re-initialization of population of local best solutions for each
new generation.

The results for simple QIEA and QIEA-PSA are pre-
sented for very large size (290,000 items) selected difficult
KP instances.

A comparison presents the effects of various changes done
in the algorithm for a sample of instances. A detailed analy-
sis of the impact of various modifications done on QIEA is
presented.

A comparisonwith parallel implementation of a determin-
istic algorithm shows that solutions provided by QIEA-PSA
are very close to optimal.

Another comparison of QIEA-PSA is made with a mod-
ified binary particle swarm optimization algorithm recently
applied on benchmark KP instances.

To summarize, the following observations result from the
experiments:

• The presented QIEA-PSA provides much better results
for difficult KP instances than the QIEA both in terms of
computing time and quality of solution.

• Greedy Initialization of qubits and best solution when
clubbed with size reduction results in more rapid conver-
gence of qubits to their final values.

• The size of problem gets reduced to an insignificantly
small portion of original problem by the 10th iteration.

• These improvements together imply that QIEA-PSA
gives much better solutions than QIEA in much lesser
computation time.

• The time taken by the reported implementation of QIEA-
PSA grows almost linearly with problem size and so is
able to handle problems that are much larger than those
reported in the literature and yet give close to optimal
values.

• QIEA-PSA provides close to optimal solutions in much
lesser time than even a recent parallel implementation of
an exact algorithm by Boyer et al. [35].

• The population size can be increased to solve more dif-
ficult instances.

• QIEA-PSAoutperforms amodifiedbinaryparticle swarm
optimization algorithm of Bansal and Deep [40] recently
applied on benchmark KP instances.

Designing the effective QIEA using the similar modifica-
tions for other more complex problems can be considered
for further work. The work can also be done such that the
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algorithm adapts to the appropriate population size automat-
ically depending on the difficulty in solving the instance.
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