
DEI Short Course on Basics of Android Application Development  “BOADD”

1

M O D U L E  -  1

I N T R O D U C T I O N

By

Dr. Ratan Saini

This is a time when programmers are getting new avenues and opportunities to design creative applications 
for state of art computing devices called smart phones, tablets and set top box etc. Smart phones with 
hardware features like GPS, accelerometers, and touch screens are providing platform for creating 
innovative applications. Android is a new wave of mobile operating system designed for competing with 
Windows Mobile and Apple’s iPhone and provides a richer, simplified development environment for 
applications.  Android gives an open development environment built on an open source Linux kernel.
Hardware access is available to all applications through a series of API libraries, and application 
interaction, while carefully controlled, is fully supported.

1.1 What is Android 
The term “Android” has its origin in the Greek word andr-, meaning “man or male” and the suffix -eides, means 
“alike or of the species”. This together means as much as “being human.  Android is an operating system 
based on Linux with a Java programming interface. It provides tools, e.g. a compiler, debugger and a 
device emulator as well as its own Java Virtual machine (Dalvik Virtual Machine - DVM).  Android is 
officially guided by the Open Handset Alliance but in reality Google leads the project. Android supports 2-
D and 3-D graphics using the OpenGL libraries and supports data storage in a SQLite database. Every 
Android applications runs in its own process and under its own user id which is generated automatically 
by the Android system during deployment. Therefore the application is isolated from other running 
applications and a misbehaving application cannot easily harm other Android applications. 

1.2 Android Versions
There are multiple versions of Android available in the market today, each with slight differences. Over 
7,00,000 Android devices were being activated everyday according to Andy Rubin, senior vice president 
of mobile at Google. Late last year, Gartner estimated that Android held 52.5% of the global smartphone 
market, significantly higher than the nearest competitors Symbian (16.9%) and iOS (15%). 

There are a couple of big reasons why Android is leading the charge. The wide choice of hardware at all 
price points, the number of apps and constant development make sure it stays at the top of its game. 

Android 2.0
Although the first commercial version of Android (v1.0) was released in 2008, all phones today (even the 
entry level range) come with at least Android 2.1 (code-named Eclair, which was released towards the 
end of 2009). Version 2.0 onwards is when Android really came into its own. 

The user interface was completely revamped, support for higher screen resolutions and screen sizes was 
included, as were live wallpapers, camera fl ash support, Exchange email support and multiple 
account/contact synchronisations on one device. Within six months, Google announced the next update, 
Android 2.2 (codenamed Froyo). Froyo added the Wi-Fi hotspot functionality, USB tethering, better 
multimedia management, push notifications and the ability to install application on the memory card 
instead of phone memory.

Android 2.3
Other minor additions included performance improvements, an improved application launcher, batch and 
automatic app update support in the Android Market, Adobe Flash support and voice dialing via 
Bluetooth. Froyo was also picked up as the OS of choice for tablets because of the built in support for 
larger displays and better stability. 
Another six months down the line, Android 2.3 (Gingerbread) was launched with the Google Nexus S. 
Gingerbread provided a revamped user interface, an improved keyboard with better accuracy and simpler 
copy/paste functionality. It added support for a front camera, gyroscope and barometer on Android 
devices. Improvements on the power management front provided for better battery life. Gingerbread has 



DEI Short Course on Basics of Android Application Development  “BOADD”

2

been getting minor updates that improved on performance and fi xed various security and functionality 
issues.

Android 3.0
Android 3.0 is a dedicated version for tablets, designed keeping a larger screen in mind (7-inch and 
larger). It includes a new interface with 3D effects, plus it tackles the issue of Android button 
standardisation. The OS removes the need to have physical buttons on the device by adding a system 
bar at the bottom. 

The system bar displays navigation buttons, notifications and even provides one-touch access to 
connectivity settings. Other improvements include a better onscreen keyboard, hardware acceleration, 
multi-core processor support and multi-tasking. 

Android 3.1 brought in support for external USB keyboards and joysticks, while Android 3.2 includes 
further bug fi xes and overall performance improvements.

Android 4.0
Google's newest version of Android (version 4.0, code-named Ice Cream Sandwich) will be the common 
OS for both Android phones and tablets going forward. It incorporates the best of both Android 2.x and 
3.x - it has a new look and is lighter, improving performance of even existing devices. 

It also brings in new features like face unlock (face recognition), a customisable launcher, separation of 
installed widgets, a new tabbed browser, built-in photo editor, improved camera performance and a 
refreshed contacts app with social network integration.

Android 4.0 is currently only on the Samsung Galaxy Nexus phone, though the OS will be available as an 
update for a majority of existing flagship Android devices from all the major manufacturers.

1.3 Android Architecture
The following picture shows the components of Android Operation System.

The main Android platform building blocks are:
Device Hardware: Android runs on a wide range of hardware configurations including smart phones, 
tablets, and set-top-boxes. Android is processor-agnostic, but it does take advantage of some hardware-
specific security capabilities such as ARM v6 eXecute-Never.
Android Operating System: The core operating system is built on top of the Linux kernel. All device 
resources, like camera functions, GPS data, Bluetooth functions, telephony functions, network 
connections, etc. are accessed through the operating system.
Android Application Runtime: Android applications are most often written in the Java programming 
language and run in the Dalvik virtual machine. However, many applications, including core Android 
services and applications are native applications or include native libraries. Both Dalvik and native 
applications run within the same security environment, contained within the Application Sandbox. 
Applications get a dedicated part of the filesystem in which they can write private data, including 
databases and raw files. 

Android applications extend the core Android operating system. There are two primary sources for 
applications:

· Pre-Installed Applications: Android includes a set of pre-installed applications including phone, 
email, calendar, web browser, and contacts. These function both as user applications and to 
provide key device capabilities that can be accessed by other applications. Pre-installed 
applications may be part of the open source Android platform, or they may be developed by an 
OEM for a specific device.

· User-Installed Applications: Android provides an open development environment supporting 
any third-party application. The Android Market offers users hundreds of thousands of 
applications.



DEI Short Course on Basics of Android Application Development  “BOADD”

3

· Google provides a set of cloud-based services that are available to any compatible Android 
device. The primary services are:

· Android Market: The Android Market is a collection of services that allow users to discover, 
install, and purchase applications from their Android device or the web. The Market makes it easy 
for developers to reach Android users and potential customers. The Market also provides 
community review, application license verification, and other security services.

· Android Updates: The Android update service delivers new capabilities and security updates to 
Android devices, including updates through the web or over the air (OTA).

· Application Services: Frameworks that allow Android applications to use cloud capabilities such 
as (backing up) application data and settings and cloud-to-device messaging (C2DM) for push 
messaging. These services are relevant to the security of most Android devices, so a related 
security document titled “Google Services for Android: Security Overview” is available on Internet.

1.4 Android Application Components 
An Android application consists out of the following parts: 

· Activity - represents the presentation layer of an Android application, e.g. a screen which the 
user sees. An Android application can have several activities and it can be switched between 
them during runtime of the application. 

· Views - the User interface of an Activitiy is built with widget classes which inherit from 
android.view.View. The layout of the views is managed by android.view.ViewGroups. Views often 
have attributes which can be used to change their appearance and behavior. 

· Services - perform background tasks without providing an UI. They can notify the user via the 
notification framework in Android. 

· ContentProvider - provides data to applications, via a content provider the application can share 
data with other applications. Android contains a SQLite DB which can serve as data provider 

· Intents - are asynchronous messages which allow the application to request functionality from 
other services or activities. An application can call directly a service or activity (explicit intent) or 
ask the Android system for registered services and applications for an intent (implicit intents). For 
example the application could ask via an intent for a contact application. Applications register 



DEI Short Course on Basics of Android Application Development  “BOADD”

4

themselves to an intent via an IntentFilter. Intents are a powerful concept as they allow the 
creation of loosely coupled applications. 

· BroadcastReceiver - receives system messages and implicit intents, can be used to react to 
changed conditions in the system. An application can register as a BroadcastReceiver for certain 
events and can be started if such an event occurs. 

· Widgets - interactive components primary used on the Android homescreen to display certain 
data and to allow the user to have quick access the the information 

· Other Android components are Live Folders and Android Live Wallpapers. Live Folders display 
data on the homescreen without launching the corresponding application. 

Libraries
Android includes a set of C/C++ libraries used by various components of the Android system. These 
capabilities are exposed to developers through the Android application framework. Some of the core 
libraries are listed below:

· System C library - a BSD-derived implementation of the standard C system library (libc), tuned 
for embedded Linux-based devices

· Media Libraries - based on PacketVideo's OpenCORE; the libraries support playback and 
recording of many popular audio and video formats, as well as static image files, including 
MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG

· Surface Manager - manages access to the display subsystem and seamlessly composites 2D 
and 3D graphic layers from multiple applications

· LibWebCore - a modern web browser engine which powers both the Android browser and an 
embeddable web view

· SGL - the underlying 2D graphics engine
· 3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use either 

hardware 3D acceleration (where available) or the included, highly optimized 3D software 
rasterizer

· FreeType - bitmap and vector font rendering
· SQLite - a powerful and lightweight relational database engine available to all applications

Dalvik Virtual Machine 
Android uses a special virtual machine, e.g. the Dalvik Virtual Machine. Dalvik uses special bytecode. 
Therefore one cannot run standard Java bytecode on Android. Android provides a tool dx which allows to 
convert Java Class files into dex (Dalvik Executable) files. Android applications are packed into an .apk
(Android Package) file by the program aapt (Android Asset Packaging Tool) To simplify development 
Google provides the Android Development Tools (ADT) for Eclipse. The ADT automatically performs the 
conversion from class to dex files and creates the apk during deployment. 

1.5 Android Application Architecture
a. AndroidManifest.xml 
An Android application is described in the file AndroidManifest.xml. This file must declare all 
Activities, Services, BroadcastReceivers and ContentProvider of the application. It 
must also contain the required permissions for the application. For example if the application requires 
network access it must be specified here. AndroidManifest.xml can be thought as the deployment 
descriptor for an Android application. 

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
      package="de.vogella.android.temperature"
      android:versionCode="1"
      android:versionName="1.0">
    <application android:icon="@drawable/icon"
android:label="@string/app_name">
        <activity android:name=".Convert"
                  android:label="@string/app_name">



DEI Short Course on Basics of Android Application Development  “BOADD”

5

            <intent-filter>
                <action android:name="android.intent.action.MAIN" />
                <category android:name="android.intent.category.LAUNCHER" />
            </intent-filter>
        </activity>

    </application>
    <uses-sdk android:minSdkVersion="9" />

</manifest>

The package attribute defines the base package for the following Java elements. It also must be unique 
as the Android Marketplace only allows application for a specific package once. Therefore a good habit is 
to use the reverse domain name as a package to avoid collisions with other developers. 
android:versionName and android:versionCode specify the version of the application. 
versionName is what the user sees and can be any string. versionCode must be an integer and the 
Android Market uses this to determine if provided a newer version to trigger the update on devices which 
have the application installed. One typically start with "1" and increase this value by one if roll-out a new 
version of application. 
The tag <activity> defines an Activity, in this example pointing to the class 
"de.vogella.android.temperature.Convert". An intent filter is registered for this class which 
defines that this Activity is started once the application starts (action 
android:name="android.intent.action.MAIN" ). The category definition category 
android:name="android.intent.category.LAUNCHER" defines that this application is added to 
the application directory on the Android device. The @string/app_name value refer to resource files 
which contain the actual values. This makes it easy to provide different resources, e.g. strings, colors, 
icons, for different devices and makes it easy to translate applications. 
The "uses-sdk" part of the "AndroidManifest.xml" defines the minimal SDK version for which the 
application is valid. This will prevent the application being installed on devices with older SDK versions. 

b. R.java, Resources and Assets
The directory gen in an Android project contains generated values. R.java is a generated class which 
contains references to resources of the res folder in the project. These resources are defined in the res
directory and can be values, menus, layouts, icons or pictures or animations. For example a resource can 
be an image or an XML file which defines strings. 
If we create a new resource, the corresponding reference is automatically created in R.java. The 
references are static int values, the Android system provides methods to access the corresponding 
resource. For example to access a String with the reference id R.string.yourString use the method 
getString(R.string.yourString));. R.java is automatically maintained by the Eclipse 
development environment, manual changes are not necessary. 
While the directory res contains structured values which are known to the Android platform the directory 
assets can be used to store any kind of data. In Java one can access this data via the AssetsManager
and the method getAssets(). 

c. Reference to resources in XML files
In the XML files, e.g. the layout files one can refer to other resources via the @ sign. For example if we 
want to refer to a color it is defined as resources and can be referred to it via @color/your_id or if 
have defined a "hello" string as resource one can access it via @string/hello . 

d. Activities and Layouts 
The user interface for Activities is defined via layouts. At runtime, layouts are instances of 
android.view.ViewGroups. The layout defines the UI elements, their properties and their 
arrangement. 



DEI Short Course on Basics of Android Application Development  “BOADD”

6

UI elements are based on the class android.view.View . ViewGroup is a subclass of the class View 
and a layout can contain UI components ( Views ) or other layouts ( ViewGroups ). A layout can be 
defined via Java code or via XML. We typically uses Java code to generate the layout if don't know the 
content until runtime; for example if the layout depends on content which we read from the Internet. 

XML based layouts are defined via a resource file in the folder /res/layout . This file specifies the 
ViewGroups , Views , their relationship and their attributes for a specific layout. If a UI element needs to 
be accessed via Java code we have to give the UI element an unique id via the android:id 
attribute. To assign a new id to an UI element use @+id/yourvalue . By conversion this will create 
and assign a new id yourvalue to the corresponding UI element. In our Java code we can later access 
these UI elements via the method findViewById(R.id.yourvalue) . 

Defining layouts via XML is usually the preferred way as this separates the programming logic from the 
layout definition. It also allows the definition of different layouts for different devices. Can also mix both 
approaches. 

e. Activities and Lifecycle 
The operating system controls the life cycle of our application. At any time the Android system may stop 
or destroy the application, e.g. because of an incoming call. The Android system defines a life cycle for 
activities via pre-defined methods. The most important methods are: 

· onSaveInstanceState() - called if the activity is stopped. Used to save data so that the 
activity can restore its states if re-started 

· onPause() - always called if the Activity ends, can be used to release resource or save data 
· onResume() - called if the Activity is re-started, can be used to initialize fields 

The activity will also be restarted if a so called "configuration change" happens. A configuration change 
for example happens if the user changes the orientation of the device (vertical or horizontal). The activity 
is in this case restarted to enable the Android platform to load different resources for these configuration, 
e.g. layouts for vertical or horizontal mode. In the emulator one can simulate the change of the orientation 
via CNTR+F11. 

We can avoid a restart of the application for certain configuration changes via the configChanges 
attribute on the activity definition in the AndroidManifest.xml. The following activity will not be restarted in 
case of orientation changes or position of the physical keyboard (hidden / visible). 

<activity android:name=".ProgressTestActivity"
     android:label="@string/app_name"
     android:configChanges="orientation|keyboardHidden|keyboard">
</activity>

f. Context 
The class android.content.Context provides the connections to the Android system. It is the 
interface to global information about the application environment. Context also provides access to 
Android Services, e.g. the Location Service. As Activities and Services extend the class Context one can 
directly access the context via this. 

1.6 Error Handling And Typical Problems
Things are not always working as they should. This section gives an overview over typical problems and 
how to solve them. 

a. Clean Project
Several users report that get the following errors: 
1. Project ... is missing required source folder: 'gen' 
2. The project could not be built until build path errors are resolved. 
3. Unable to open class file R.java. 
To solve any of these errors, go to the project menu and select Project -> Clean. 



DEI Short Course on Basics of Android Application Development  “BOADD”

7

b. Problems with Android Debug Bridge (adb) 
The communication with the emulator or Android device might have problems. This communication is 
handled by the Android Debug Bridge (adb). 
Eclipse allows to reset the adb in case this causes problems. Select therefore the DDMS perspective via 
Window → Open Perspective → Other → DDMS
To restart the adb, select the "Reset adb" in the Device View. 

c. LogCat
The "LogCat" View shows the log messages of Android device and help analyze problems. For example 
Java exceptions in the program would be shown here. To open this view, select Window → Show View
→ Other → Android → LogCat. 

d. Emulator does not start
If the emulator does not start, make sure that the android-sdk version is in a path without any spaces in 
the path name. 

e. Error message for @override 
The @override annotation was introduced in Java 1.6. If you receive an error message for @override, 
change the Java compiler level to Java 1.6. To do this right-click on the project, select Properties → Java 
Compiler → Compiler compliance level and select "1.6" in the drop-down box. 

f. Missing Imports
Java requires that classes which are not part of the standard Java Language be either fully qualified or declared via 
imports. If you see error message with "XX cannot be resolved to a variable", right-click in your Editor and select 
Source → Organize Imports to important required packages. 

1.7 Android Security
Android defines certain permissions for certain tasks. For example if the application wants to access the 
Internet it must define in its configuration file that it would like to use the related permission. During the 
installation of an Android application the user receives a screen in which he needs to confirm the required 
permissions of the application. 

Android seeks to be the most secure and usable operating system for mobile platforms by re-purposing 
traditional operating system security controls to:

· Protect user data
· Protect system resources (including the network)
· Provide application isolation

To achieve these objectives, Android provides these key security features:
· Robust security at the OS level through the Linux kernel



DEI Short Course on Basics of Android Application Development  “BOADD”

8

· Mandatory application sandbox for all applications
· Secure inter process communication
· Application signing
· Application-defined and user-granted permissions

The sections below describe these and other security features of the Android platform. Figure 1
summarizes the security components and considerations of the various levels of the Android software 
stack. Each component assumes that the components below are properly secured. With the exception of 
a small amount of Android OS code running as root, all code above the Linux Kernel is restricted by the 
Application Sandbox.
a. System and Kernel Level Security
At the operating system level, the Android platform provides the security of the Linux kernel, as well as a
secure inter-process communication (IPC) facility to enable secure communication between applications 
running in different processes. These security features at the OS level ensure that even native code is 
constrained by the Application Sandbox. Whether that code is the result of included application behavior 
or a exploitation of an application vulnerability, the system would prevent the rogue application from 
harming other applications, the Android system, or the device itself.

b. Linux Security
The foundation of the Android platform is the Linux kernel. The Linux kernel itself has been in widespread 
use for years, and is used in millions of security-sensitive environments. Through its history of constantly 
being researched, attacked, and fixed by thousands of developers, Linux has become a stable and 
secure kernel trusted by many corporations and security professionals.
As the base for a mobile computing environment, the Linux kernel provides Android with several key 
security features, including:

· A user-based permissions model
· Process isolation
· Extensible mechanism for secure IPC
· The ability to remove unnecessary and potentially insecure parts of the kernel

As a multi-user operating system, a fundamental security objective of the Linux kernel is to isolate user 
resources from one another. The Linux security philosophy is to protect user resources from one another. 
Thus, Linux:

· Prevents user A from reading user B's files
· Ensures that user A does not exhaust user B's memory
· Ensures that user A does not exhaust user B's CPU resources
· Ensures that user A does not exhaust user B's devices (e.g. telephony, GPS, Bluetooth)

Each Android app is assigned a unique user ID. Apps are rigorously isolated in terms of both data and 
resources that is process and memory. 

M O D U L E  -  2

                                         Setup Android Development Environment
By

Mr. Manish Kumar

2.1 Installation Steps 
The best way to develop applications for Android is using the Eclipse IDE and the Android plug-in for 
Eclipse called Android Development Tools (ADT). You can test your applications by running them on an 
Android Virtual Device (AVD), aka Android emulator.

To setup your environment, follow each of the steps below in order. Detailed installation instructions are
available at: http://developer.android.com/sdk/installing.html
1. Download and install JDK 7
http://www.oracle.com/technetwork/java/javase/downloads/index.html
2. Download and install Eclipse IDE for Java EE Developers (version 3.7 - Indigo)
http://www.eclipse.org/downloads/
3. Download the Android SDK and unzip it onto your hard drive in a location of your choosing.



DEI Short Course on Basics of Android Application Development  “BOADD”

9

http://developer.android.com/sdk/index.html
4. Download and install the Android Development Tools (ADT) for Eclipse
http://developer.android.com/sdk/eclipse-adt.html

2.2 JAVA 

If the system is not installed with Java SDK 7, one need to install the same by downloading from 
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2.3 Eclipse

The next step towards developing any applications is obtaining the integrated development environment 
(IDE). In the case of Android, the recommended IDE is Eclipse, a multi-language software development 
environment featuring an extensible plug-in system. For Android development, one should download the 
Eclipse IDE for Java EE Developers. 
(http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/ecl
ipse-jee-indigo-SR1-win32.zip). 

2.4 Android SDK

The Android SDK is an important piece of software one need to download and install. The Android SDK 
contains a debugger, libraries, an emulator, documentation, sample code, and tutorials. One can 
download the Android SDK from http://developer.android.com/sdk/ index.html. Once the SDK is 
downloaded, unzip its content (the android-sdk-windows folder) into the C:\Android\ folder, or whatever 
name one have given to the folder just created.

2.5 Android Development Tools (ADT)

The Android Development Tools (ADT) plug-in for Eclipse is an extension to the Eclipse IDE that
supports the creation and debugging of Android applications. Using the ADT, one will be able to do the 
following in Eclipse:
� �  Create new Android application projects.
� �  Access the tools for accessing Android emulators and devices.
� �  Compile and debug Android applications.
� �  Export Android applications into Android Packages (APK).
� �  Create digital certificates for code-signing the APK.

To install the ADT, first launch Eclipse by double-clicking on the eclipse.exe file located in the
Eclipse folder.

When Eclipse is first started, one will be prompted for a folder to use as the workspace. In Eclipse, a 
workspace is a folder where it will store all the projects. Take the default suggested and click OK. Here 
we are using C:\Users\Administrator\workspace as space to store all projects. 



DEI Short Course on Basics of Android Application Development  “BOADD”

10

Once Eclipse is up and running, select the Help �  install New Software from menu item 

In the Install window that appears type http://dl-ssl.google.com/android/eclipse in the text box and click 
Add. It will ask to assign a name that repository, one can assign name and Click OK.



DEI Short Course on Basics of Android Application Development  “BOADD”

11

After a while, one will see the Developer Tools item appear in the middle of the window.
Expand it (see figure below), and it will reveal its content: Android DDMS, Android Development Tools, 
and Android Hierarchy Viewer. Check all of them and click next.

When one see the installation details, as shown in figure below, click Next.



DEI Short Course on Basics of Android Application Development  “BOADD”

12

One will be asked to review the licenses for the tools (see figure below). Check the option to accept the 
license agreements. Click Finish to continue.

Eclipse will now proceed to download the tools from the Internet and install them. This will take some 
time, so be patient.



DEI Short Course on Basics of Android Application Development  “BOADD”

13

Once the ADT is installed, one will be prompted to restart Eclipse. After doing so, go to Window �
Preferences (see figure below).

In the Preferences window that appears, select Android. Enter the location of the Android SDK folder. In 
this example, it would be C:\Users\Administrator\Android-sdks. Click OK.



DEI Short Course on Basics of Android Application Development  “BOADD”

14



DEI Short Course on Basics of Android Application Development  “BOADD”

15

2.6 Creating Android Virtual Devices (AVD’s)

The next step is to create AVD (Android Virtual device) to be used for testing Android applications. AVD 
stands for Android Virtual Devices. An AVD is an emulator instance that enables to model an actual 
device. Each AVD consists of a hardware profile, a mapping to a system image, as well as emulated 
storage, such as a secure digital (SD) card. One can create as many AVD’s as one want in order to test 
applications with several different configurations. This testing is important to confirm the behavior of  
application when it is run on different devices with varying capabilities.
To install different version of android API, go to Windows �  Android SDK Manager.
Select the Available packages option and expand the package name shown in the main pane. Figure 
below shows the various packages available to create AVD’s to emulate the different versions of an 
Android device. Make sure Android SDK Tools and Android platform-tools are checked under Tools tab 
because these packages are necessary to run android development kit.

Check the relevant tools, documentation, and platforms one need for the project.
Once  we have selected the desired items, click the Install Selected button to download them. Next 
screen will appear to ask choose packages to install now check accept all radio button to install all the 
packages to install.



DEI Short Course on Basics of Android Application Development  “BOADD”

16

Now it will take some time to install these packages because it will download that packages from Google 
server so please wait until it will complete the installation.
To create new Android Virtual Device (AVD) window, go to Windows �  Android AVD Manager.

Now click on New button. A screen will appear fill that according to the requirement and Click the Create 
AVD button located at bottom when we are done.



DEI Short Course on Basics of Android Application Development  “BOADD”

17

This will create Android virtual device to test applications. Now the primary platform is ready to work with 
android SDK.



DEI Short Course on Basics of Android Application Development  “BOADD”

18

M O D U L E  -  3

                                               Basics of Application Development 
By

Dr. Ratan Saini & Mr. Manish Kumar

3.1 Creating a new Android Project:

1. Start Eclipse, select File > New > Project....

2. Select "Android Project" and click Next (see figure 3.1).

(Figure 3.1)

3. Fill in the Project Details

ü Project Name: Hello World (This is the Eclipse project name and the name of the directory 

that contains the project files.), make sure “Create new project” radio button is checked in 

workspace, than click on Next button (see figure 3.2).



DEI Short Course on Basics of Android Application Development  “BOADD”

19

(Figure 3.2)

ü Select Build Target: Select a platform version that is equal to or lower than the target you chose 

for your AVD (in our case we are using android 2.1 platform) and click Next.

Build Target is the version of the Android SDK that you're using to build your application. For 

example, if you choose Android 2.1, your application will be compiled against the Android 2.1 

platform library. The target you choose here does not have to match the target you chose for your 

AVD; however, the target must be equal to or lower than the target you chose for your AVD. 

Android applications are forward-compatible, which means an application will run on the platform 

against which it is built as well as all platforms that are released in the future (see figure 3.3). 

ü Application name: Hello World

Description: This is the human-readable title for your application — the name that appears on the 

Android device (see figure 3.4).

ü Package name: dei.helloworld

Description: This is the package namespace (following the same rules as for packages in the 

Java programming language) that you want all your source code to reside under. This also sets 

the package name under which the stub Activity is generated (see figure 3.4).



DEI Short Course on Basics of Android Application Development  “BOADD”

20

(Figure 3.3)
ü Create Activity: helloworld

Description: This is the name for the class stub that is generated by the plugin. This is a subclass 
of Android's Activity class. An Activity is simply a class that can run and do work. It can 

create a UI if it chooses, but it doesn't need to. As the checkbox suggests, this is optional, but an 

Activity is almost always used as the basis for an application (see figure 3.4).

ü Min SDK Version

Description: This value specifies the minimum API Level on which your application will run. 
The Min SDK Version should be the same as the Build Target you chose. For example, if 

the Build Targets Android 2.1, then the Min SDK Version should be 7 or lower (it can 

never be higher than 7) (see figure 3.4).



DEI Short Course on Basics of Android Application Development  “BOADD”

21

(Figure 3.4)

Click Finish. This should create the following directory structure (see figure 3.5).

(Figure 3.5)



DEI Short Course on Basics of Android Application Development  “BOADD”

22

The Android project is now ready. It should be visible in the Package Explorer on the left. Default root 

folders and files are as follows: 

AndroidManifest.xml: An XML file describing the application being built and which components—
activities, services, and so on—are being supplied by that application. 

build.xml: An Ant script for compiling the application and installing it on the device.
CHAPTER 2: Projects and Targets 7
default.properties and local.properties: Property files used by the Ant build script.

Assets/: A folder that holds other static files you wish packaged with the application for deployment onto 
the device.

bin/: A folder that holds the application once it is compiled.

gen/: Where Android’s build tools will place source code that they generate.

libs/: A folder that holds any third-party JARs which the application requires.

src/: A folder that holds the Java source code for the application.

res/: A folder that holds resources—such as icons, graphic user interface (GUI) layouts, and the like—
that are packaged with the compiled Java in the application.

tests/:  A folder that holds an entirely separate Android project used for testing the one you created.

The res/ directory tree holds resources—static files that are packaged along with your application, either 

in their original form or, occasionally, in a preprocessed form. These are some of the subdirectories you 

will find or create under res/:8 

res/drawable/: For images (PNG, JPEG, etc.).

res/layout/: For XML-based UI layout specifications.

res/menu/: For XML-based menu specifications.

res/raw/: For general-purpose files (e.g., a CSV file of account information).

res/values/: For strings, dimensions, and the like.

When you compile your project (via ant or the IDE), the results go into the bin/ directory under your 
project root, as follows:

bin/classes/: Holds the compiled Java classes.

bin/classes.dex: Holds the executable created from those compiled Java classes.

bin/yourapp.ap_: Holds your application’s resources, packaged as a ZIP file (where yourapp is the 

name of the application).

bin/yourapp-debug.apk or bin/yourapp-unsigned.apk: The actual Android application (where 

yourapp is the name of your application).

The apk file is a ZIP archive containing the .dex file, the compiled edition of your resources 
(resources.arsc), any uncompiled resources (such as what you put in res/raw/), and the 
AndroidManifest.xml file.



DEI Short Course on Basics of Android Application Development  “BOADD”

23

Now, Open the helloworld.java file, located inside Hello World > src > dei.helloworld). It should look like 

this:

package dei.helloworld;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class helloworld extends Activity {
    /** Called when the activity is first created. */
   

@Override  
    
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
    }

}

Now modify this file according to your requirement, here we are printing Hello World in a TextVIew and 
for this code are as follows:

package dei.helloworld;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class helloworld extends Activity {   
/** Called when the activity is first created. */  
@Override   
public void onCreate(Bundle savedInstanceState) {      
super.onCreate(savedInstanceState);
TextView tv = new TextView(this);      

tv.setText("Hello World!");       
setContentView(tv);   
}

}
Description of the Program:
android.app.Activity;
Activity class takes care of creating a window for in which we can place our UI 
with setContentView(View). While activities are often presented to the user as full-screen windows, 
they can also be used in other ways: as floating windows (via a theme with windowsFloating set) or 
embedded inside of another activity (using ActivityGroup). There are two methods almost all 
subclasses of Activity will implement:
· onCreate(Bundle) is where we initialize our activity. Most importantly, here we will usually 

call setContentView(int) with a layout resource defining our UI, and using 

findViewById(int) to retrieve the widgets in that UI that one need to interact with 

programmatically.
· onPause() is where we deal with the user leaving our activity. Most importantly, any changes made 

by the user should at this point be committed (usually to theContentProvider

android.os.Bundle;
A mapping from String values to various Parcelable types.



DEI Short Course on Basics of Android Application Development  “BOADD”

24

android.widget.TextView;
Displays text to the user and optionally allows them to edit it. A TextView is a complete text editor; 
however the basic class is configured to not allow editing.

In this example, we create a TextView with the class constructor, which accepts an 
Android Context instance as its parameter. A Context is a handle to the system; it provides services like 
resolving resources, obtaining access to databases and preferences, and so on.

The Activity class inherits from Context, and because your helloworld class is a subclass of Activity, it 
is also a Context. So, you can pass this as your Context reference to the TextView.

In this example first we create a new TextView by the name of tv variable. Now we define the text 
content with setText() in to tv variable of TextView.

Finally, we pass the TextView to setContentView() in order to display it as the content for the 
Activity UI and we will get the result as shown in Figure 3.6:

(Figure 3.6)

3.2 Example: Add Two Numbers.

Solution-



DEI Short Course on Basics of Android Application Development  “BOADD”

25

Again select File > New >Project. To create a new project.
Select “Android Project” and click Next.

Fill in the project details with the following values:

· Project name: add

· Build Target: Select a platform version that is equal to or lower than the target AVD (in our example 

we choose 2.1).

· Application name: Add two numbers

· Package name: add. Android

· Create Activity: add

Click Finish.

The Android project is now ready. It should be visible in the Package Explorer on the left.

The "Hello World" example mentioned above uses what is called a "programmatic" UI layout. This means 

that we constructed and built our application's UI directly in source code. If we have done much UI 

programming, we are probably familiar with how brittle that approach can sometimes be: small changes 

in layout can result in big source-code headaches. It's also easy to forget to properly connect Views 

together, which can result in errors in our layout and wasted time debugging the code.

That's why Android provides an alternate UI construction model: XML-based layout files.

Here is an example of main.xml file which is located in res/layout/ directory.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:orientation="vertical" >

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/textview"



DEI Short Course on Basics of Android Application Development  “BOADD”

26

  android:layout_width="fill_parent"
android:layout_height="fill_parent"

  android:text="@string/hello"/>

</LinearLayout>

Attribute Meaning

xmlns:android This is an XML namespace declaration that tells the Android tools 
that are going to be referred to common attributes defined in the 
Android namespace. The outermost tag in every Android layout file 
must have this attribute.

android:id This attribute assigns a unique identifier to the TextView element. 
One can use the assigned ID to reference this View from the 
source code or from other XML resource declarations.

android:layout_width This attribute defines how much of the available width on the 
screen this View should consume. In this case, it's the only View 
so one want it to take up the entire screen, which is what a value 
of "fill_parent" means.

android:layout_height This is just like android:layout_width, except that it refers to 
available screen height.

android:text This sets the text that the TextView should display. In this 
example, we use a string resource instead of a hard-coded string 
value. The hello string is defined in the res/values/strings.xml file. 
This is the recommended practice for inserting strings to our 
application, because it makes the localization of application to 
other languages graceful, without need to hard-code changes to 
the layout file.

Inside the res/values/ folder, open strings.xml. This is where we should save all default text strings for our 
user interface. When we are using Eclipse, then ADT will have started with two strings, Hello 
Worlds and app_name. 

<?xml version="1.0" encoding="utf-8"?>
<resources>
    <string name="hello">Hello World, HelloAndroid!</string>
    <string name="app_name">Hello World </string></resources>

Now coming back to this example first create the layout of the application from main.xml file. It should 

look like this:

<?xml version="1.0" encoding="utf-8"?>
<AbsoluteLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:orientation="vertical" >

    <EditText
        android:id="@+id/editText1"
        android:layout_width="140dp"
        android:layout_height="wrap_content" >
        <requestFocus />



DEI Short Course on Basics of Android Application Development  “BOADD”

27

    </EditText>

    <EditText
        android:id="@+id/editText2"
        android:layout_width="140dp"
        android:layout_height="wrap_content"
        android:layout_x="154dp"
        android:layout_y="1dp" />
    <Button
        android:id="@+id/button1"
        android:layout_width="175dp"
        android:layout_height="wrap_content"
        android:layout_x="72dp"
        android:layout_y="64dp"
        android:text="@string/add" />
    <EditText
        android:id="@+id/editText3"
        android:layout_width="294dp"
        android:layout_height="wrap_content"
        android:layout_x="9dp"
        android:layout_y="128dp" />

</AbsoluteLayout>

Here we are using three EditText widget to get the input from user in two EditText and Print the Output in 

third EditText, Here we can also use TextView for the output.

Another Widget we are using is button by clicking on this button we will get the output.

Now come on to the string.xml located inside res/values file to label the buttons and to print the pre 

specified text and number in the TextView. This file for our example will look like this:

 <?xml version="1.0" encoding="utf-8"?>
<resources>

    <string name="hello">Hello World, add!</string>
    <string name="app_name">Add</string>
    <string name="add">ADD</string>

</resources>

Now, Open the add.java file, located inside add > src > add.android). This file for our example will look 

like this: 

package add.android;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.Button;;

public class add extends Activity {
    /** Called when the activity is first created. */

private EditText text1;
private EditText text2;
private EditText text3;
private Button button1;



DEI Short Course on Basics of Android Application Development  “BOADD”

28

private double amount1=0;
private double amount2=0;
private double amount3=0;

    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        
        text1 = (EditText)findViewById(R.id.editText1);
        text2 = (EditText)findViewById(R.id.editText2);
        text3 = (EditText)findViewById(R.id.editText3);
        button1 = (Button)findViewById(R.id.button1);
        
        button1.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        amount1=Double.parseDouble(text1.getText().toString());
        amount2=Double.parseDouble(text2.getText().toString());
        
             amount3=amount1+amount2;
        
        text3.setText(Double.toString(amount3));
        
        }});
        
    }
}

Description of the Program:
android.view.View;
Visual indicator of progress in some operation. Space is a lightweight View subclass that may be used to 
create gaps between components in general purpose layouts. SurfaceView Provides a dedicated 
drawing surface embedded inside of a view hierarchy. TextView Displays text to the user and optionally 
allows them to edit it. TextureView

A TextureView can be used to display a content stream.

A ViewGroup is a special view that can contain other views (called children.) The view group is the base 
class for layouts and views containers. ViewStub A ViewStub is an invisible, zero-sized View that can be 
used to lazily inflate layout resources at runtime.

android.widget.EditText

An editable text view that shows completion suggestions automatically while the user is typing.
ExtractEditText Specialization of EditText for showing and interacting with the extracted text in a full-
screen input method.

android.widget.Button

A button with two states, checked and unchecked.

RadioButton A radio button is a two-states button that can be either checked or unchecked.



DEI Short Course on Basics of Android Application Development  “BOADD”

29

Switch A Switch is a two-state toggle switch widget that can select between two options.

ToggleButton
Displays checked/unchecked states as a button with a "light" indicator and by default 
accompanied with the text "ON" or "OFF".

Class Overview

Represents a push-button widget. Push-buttons can be pressed, or clicked, by the user to perform an 
action. 

A typical use of a push-button in an activity would be the following: 

 public class MyActivity extends Activity {
     protected void onCreate(Bundle icicle) {
         super.onCreate(icicle);

         setContentView(R.layout.content_layout_id);

         final Button button = (Button) findViewById(R.id.button_id);
         button.setOnClickListener(new View.OnClickListener() {
             public void onClick(View v) {
                 // Perform action on click
             }
         });
     }
 }

In this example instead of passing setContentView() a View object, we give it a reference to the layout 
resource. The resource is identified as R.layout.main, which is actually a compiled object representation 
of the layout defined in /res/layout/main.xml. The Eclipse plugin automatically creates this reference for 
us inside the project's R.java class. A project's R.java file is an index into all the resources defined in the 
file. We use this class in our source code as a sort of short-hand way to refer to resources we have 
included in our project. This is particularly powerful with the code-completion features of IDEs like Eclipse 
because it lets us quickly and interactively locate the specific reference we are looking for.

setContentView(R.layout.main);- Set the activity content from a layout resource. The resource will be 
inflated, adding all top-level views to the activity.

text1 = (EditText)findViewById(R.id.editText1);
text2 = (EditText)findViewById(R.id.editText2);
text3 = (EditText)findViewById(R.id.editText3);
button1 = (Button)findViewById(R.id.button1);

Finds a view that was identified by the id attribute from the XML that was processed in onCreate(Bundle).

By these commands we retrieve EditText widgets in to a variable text1, text2 & text3 and button in 

button1 variable. Here we are retrieve these widgets values by findViewById command. This will give us 

values of widgets according to their ID’s. 

button1.setOnClickListener: Register a callback to be invoked when this view is clicked. If this view is 
not clickable, it becomes clickable.

Button.OnClickListener():Interface definition for a callback to be invoked when a view is clicked. 



DEI Short Course on Basics of Android Application Development  “BOADD”

30

getText(): Return the text the TextView is displaying. If setText() was called with an argument of 
BufferType.SPANNABLE or BufferType.EDITABLE, one can cast the return value from this method to 
Spannable or Editable, respectively.

amount1=Double.parseDouble(text1.getText().toString());

amount2=Double.parseDouble(text2.getText().toString());

Parses the specified string as a double value.

Parameters

string the string representation of a double value.

Returns

· the primitive double value represented by string.

amount3=amount1+amount2;

Here we are calculating the sum of amount1 and amount2 variable in amount3 variable.

SetText():Sets the string value of the TextView. TextView does not accept HTML-like formatting, which 
we can do with text strings in XML resource files. 

Double.toString(amount3):Returns a string containing a concise, human-readable description of the 
specified double value. 

Result of the above program will look like this:



DEI Short Course on Basics of Android Application Development  “BOADD”

31



DEI Short Course on Basics of Android Application Development  “BOADD”

32

3.3  Example : Simple calculator

Now our third example is a basic calculator which handles basic operations like add, subtract 
multiplication and division.
Start with create a new Android project and define project name as calculator and fill other 
entries as follows:
Select build target: Android 2.1
Application Name: Simple Calculator
Package Nam:        Calculator.android
Activity:       Calculator
Now our project is ready to work with and modify this according to our requirement. In the 
Eclipse Package Explorer, expand the /res/layout/ folder and open main.xml (once opened, we 
might need to click the "main.xml" tab at the bottom of the window to see the XML source). 
Replace the contents with the following XML:
Main.xml 
<?xml version="1.0" encoding="utf-8"?>
<AbsoluteLayout
xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="fill_parent"
    android:layout_height="fill_parent"
    android:background="@color/color1"
    android:orientation="vertical" >

    <EditText
        android:id="@+id/editText1"
        android:layout_width="304dp"
        android:layout_height="93dp"
        android:layout_x="8dp"
        android:layout_y="8dp"
        android:text="@string/pre"
        android:inputType="number"/>

    <Button
        android:id="@+id/button1"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="8dp"
        android:layout_y="166dp"
        android:text="@string/seven" />

    <Button
        android:id="@+id/button2"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="88dp"
        android:layout_y="166dp"
        android:text="@string/eight" />

    <Button



DEI Short Course on Basics of Android Application Development  “BOADD”

33

        android:id="@+id/button3"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="168dp"
        android:layout_y="166dp"
        android:text="@string/nine" />

    <Button
        android:id="@+id/button4"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="245dp"
        android:layout_y="166dp"
        android:text="@string/divide" />

    <Button
        android:id="@+id/button5"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="8dp"
        android:layout_y="246dp"
        android:text="@string/four" />

    <Button
        android:id="@+id/button6"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="88dp"
        android:layout_y="246dp"
        android:text="@string/five" />

    <Button
        android:id="@+id/button7"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="168dp"
        android:layout_y="246dp"
        android:text="@string/six" />

    <Button
        android:id="@+id/button8"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="245dp"
        android:layout_y="246dp"
        android:text="@string/multiply" />



DEI Short Course on Basics of Android Application Development  “BOADD”

34

    <Button
        android:id="@+id/button9"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="8dp"
        android:layout_y="318dp"
        android:text="@string/one" />

    <Button
        android:id="@+id/button10"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="88dp"
        android:layout_y="318dp"
        android:text="@string/two" />

    <Button
        android:id="@+id/button11"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="168dp"
        android:layout_y="318dp"
        android:text="@string/three" />

    <Button
        android:id="@+id/button12"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="245dp"
        android:layout_y="318dp"
        android:text="@string/minus" />

    <Button
        android:id="@+id/button13"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="8dp"
        android:layout_y="395dp"
        android:text="@string/dot" />

    <Button
        android:id="@+id/button14"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="88dp"
        android:layout_y="395dp"
        android:text="@string/zero" />



DEI Short Course on Basics of Android Application Development  “BOADD”

35

    <Button
        android:id="@+id/button15"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="168dp"
        android:layout_y="395dp"
        android:text="@string/equal" />

    <Button
        android:id="@+id/button16"
        android:layout_width="60dp"
        android:layout_height="wrap_content"
        android:layout_x="245dp"
        android:layout_y="395dp"
        android:text="@string/plus" />

    <Button
        android:id="@+id/button17"
        style="@android:style/Animation.InputMethod"
        android:layout_width="293dp"
        android:layout_height="wrap_content"
        android:layout_x="11dp"
        android:layout_y="108dp"
        android:text="@string/clear" />
    
</AbsoluteLayout>
Here we are using 17 buttons for input the numbers and operators. For input and output we are 
using only one EditText means we are taking input and output from the same text field.
Now inside the res/values/ folder, open strings.xml. This is where we should save all default text 
strings for your user interface. The entire file should now look like this:
String.xml 
<?xml version="1.0" encoding="utf-8"?>
<resources>
   <string name="app_name">Calculator</string>

    <string name="one">1</string>
    <string name="two">2</string>
    <string name="three">3</string>
    <string name="four">4</string>
    <string name="five">5</string>
    <string name="six">6</string>
    <string name="seven">7</string>
    <string name="eight">8</string>
    <string name="nine">9</string>
    <string name="zero">0</string>
    <string name="plus">+</string>
    <string name="minus">-</string>
    <string name="multiply">*</string>
    <string name="divide">/</string>
    <string name="clear">Clear</string>



DEI Short Course on Basics of Android Application Development  “BOADD”

36

    <string name="equal">=</string>
    <string name="dot">.</string>
    <color name="color1">#56A5EC</color>
    <color name="color2">#00008B</color>
</resources>
Now open and modify your calculator class and use the XML layout. Edit the file to look like this:
Calculator.java:

package calculator.android;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class calculator extends Activity {
    /** Called when the activity is first created. */

private Button button1;
private Button button2;
private Button button3;
private Button button4;
private Button button5;
private Button button6;
private Button button7;
private Button button8;
private Button button9;
private Button button10;
private Button button11;
private Button button12;
private Button button13;
private Button button14;
private Button button15;
private Button button16;
private Button button17;
private EditText text;
double operandOne;
double operandTwo;

    int operator;

    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        
        text = (EditText)findViewById(R.id.editText1);
        button1 = (Button)findViewById(R.id.button1);
        button2 = (Button)findViewById(R.id.button2);
        button3 = (Button)findViewById(R.id.button3);
        button4 = (Button)findViewById(R.id.button4);
        button5 = (Button)findViewById(R.id.button5);



DEI Short Course on Basics of Android Application Development  “BOADD”

37

        button6 = (Button)findViewById(R.id.button6);
        button7 = (Button)findViewById(R.id.button7);
        button8 = (Button)findViewById(R.id.button8);
        button9 = (Button)findViewById(R.id.button9);
        button10 = (Button)findViewById(R.id.button10);
        button11 = (Button)findViewById(R.id.button11);
        button12 = (Button)findViewById(R.id.button12);
        button13 = (Button)findViewById(R.id.button13);
        button14 = (Button)findViewById(R.id.button14);
        button15 = (Button)findViewById(R.id.button15);
        button16 = (Button)findViewById(R.id.button16);
        button17 = (Button)findViewById(R.id.button17);      

      
        
        
        button1.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
             
        if (text.getText().equals(""))
    text.setText("7");
    else
    text.setText(text.getText() + "7");
        }
        
               
        });  
        
        
        button2.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
                if (text.getText().equals(""))
   text.setText("8");

    else
    text.setText(text.getText() + "8");
        }
        
               
        });  
        
        
        button3.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        if (text.getText().equals(""))
    text.setText("9");
    else
    text.setText(text.getText() + "9");
        }
        
               
        });  



DEI Short Course on Basics of Android Application Development  “BOADD”

38

        
        
        button5.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        if (text.getText().equals("")){
        
        text.setText("4");
        }
    else
    text.setText(text.getText() + "4");
        }
        
               
        });  
        
        
        button6.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        if (text.getText().equals(""))
    text.setText("5");
    else
    text.setText(text.getText() + "5");
        }
        
               
        });  
        
        
        button7.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        if (text.getText().equals(""))
    text.setText("6");
    else
    text.setText(text.getText() + "6");
        }
        
               
        });  
        
        
        button9.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        if (text.getText().equals(""))
    text.setText("1");
    else
    text.setText(text.getText() + "1");
        }
        
               
        });  



DEI Short Course on Basics of Android Application Development  “BOADD”

39

        
        button10.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        if (text.getText().equals(""))
    text.setText("2");
    else
    text.setText(text.getText() + "2");
        }
        
               
        });  
        
        
        button11.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        if (text.getText().equals(""))
    text.setText("3");
    else
    text.setText(text.getText() + "3");
        }
        
               
        });  
        
        button13.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){         
        
        if (text.getText().equals("")){
        text.setText("0.");
        }
        else if  (text.getText().toString().indexOf('.') == -1){
        text.setText(text.getText() + ".");
        }   
        else {}
        }}); 
       
        
        button14.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        if (text.getText().equals(""))
    text.setText("0");
    else
    text.setText(text.getText() + "0");
        }
        
               
        });  
        
        
        



DEI Short Course on Basics of Android Application Development  “BOADD”

40

      
    
        button17.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
          text.setText("0");
        }});  
        
        
        button16.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        operandOne =Double.parseDouble(text.getText().toString());
    text.setText("");
    operator = 1;
        }});  
        
        button12.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        operandOne =Double.parseDouble(text.getText().toString());
    text.setText("");
    operator = 2;
        }}); 

        
        button8.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        operandOne =Double.parseDouble(text.getText().toString());
    text.setText("");
    operator = 3;
        }}); 
        
        
        button4.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        operandOne =Double.parseDouble(text.getText().toString());
    text.setText("");
    operator = 4;
        }}); 
        
        
        button15.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        
        operandTwo = Double.parseDouble(text.getText().toString());

switch(operator){
case 1:
text.setText(Double.toString(operandOne + operandTwo));
operandOne = 0.0;
operandTwo = 0.0;
break;
case 2:
text.setText(Double.toString(operandOne - operandTwo));
operandOne = 0.0;



DEI Short Course on Basics of Android Application Development  “BOADD”

41

operandTwo = 0.0;
break;
case 3:
text.setText(Double.toString(operandOne * operandTwo));
operandOne = 0.0;
operandTwo = 0.0;
break;
case 4:

                if (operandTwo != 0.0){
                   text.setText(Double.toString(operandOne / 
operandTwo));

operandOne = 0.0;
operandTwo = 0.0;}

                else{
                  text.setText("0");}

break;
}

        
        }});  
        
        

     }

}

Description of the program:

android.widget.EditText;

An editable text view that shows completion suggestions automatically while the user is typing.
ExtractEditText Specialization of EditText for showing and interacting with the extracted text in a full-
screen input method.

        button1.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
            
        if (text.getText().equals(""))
    text.setText("7");
    else
    text.setText(text.getText() + "7");
        }
        
               

        });  

Here we are defining the task behind each button or set numbers on click the buttons. Here when we 
click on this button it will first check content of EditText field who’s information we are getting in text 
variable using getText() method. Now text variable is null than it will print the number 7 otherwise it will 
print 7 will earlier numbers.



DEI Short Course on Basics of Android Application Development  “BOADD”

42

 Similarly define numbers for each button i.e., from 0 to 9.

Now define the operators when we click on operator button like + button.

button16.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        operandOne =Double.parseDouble(text.getText().toString());
    text.setText("");
    operator = 1;

        }});     

Here when we click on + button than it will convert that previous EditText content in String and then 
parses that string value in double format and save that as a operandOne variable after it will clear the 
value of Editext and set the operator variable value 1.

Similarly, do this for all the operators and change the operator value according to that operation.

button15.setOnClickListener(new Button.OnClickListener()
        { public void onClick (View v){ 
        
        
        operandTwo = Double.parseDouble(text.getText().toString());

switch(operator){
case 1:
text.setText(Double.toString(operandOne + operandTwo));
operandOne = 0.0;
operandTwo = 0.0;
break;
case 2:
text.setText(Double.toString(operandOne - operandTwo));
operandOne = 0.0;
operandTwo = 0.0;
break;
case 3:
text.setText(Double.toString(operandOne * operandTwo));
operandOne = 0.0;
operandTwo = 0.0;
break;
case 4:

                if (operandTwo != 0.0){
                   text.setText(Double.toString(operandOne / 
operandTwo));

operandOne = 0.0;
operandTwo = 0.0;}

                else{
                  text.setText("0");}

break;

}



DEI Short Course on Basics of Android Application Development  “BOADD”

43

Now finally when we click on = button then it will save present Editext value in operandTwo variable. 
Here for getting the operator value we make a switch on operator according to the operator value we 
define on the each operator button and set the operation according to each case.

Now Run the program and we get the output shown below:



DEI Short Course on Basics of Android Application Development  “BOADD”

44

M O D U L E  -  4

Advance Apps Demo:
Quotation Reader, Picture Gallery and Salary Program

By

Dr. Ratan Saini & Mr. Manish Kumar

The advance applications developed at the DEI Computer Centre include Quotation Reader, Picture 
Gallery and Salary Program.

4.1 Quotation Reader
The application is designed to create a reader based on public class TextView. The screen display is 
shown in figure 4.1 below.



DEI Short Course on Basics of Android Application Development  “BOADD”

45

Figure 4.1 The opening Screen of the Program

On clicking Next button, random quotation is displayed as shown below in figure 4.2 

Figure 4.2 : Random quotation being displayed.



DEI Short Course on Basics of Android Application Development  “BOADD”

46

4.2 Picture Gallery
The application is designed to create a image viewer based on public class ImageView and View 
Flipper. The screen display shows images and slide or flip brings next image.

4.3  DEI Salary 
The application uses Spinner to choose pension scheme. The app helps calculate salary details based 
on input of Basic Salary, Grade pay and Pension Scheme type as shown in figure 4.3 below.

Figure 4.3


