Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 16.8.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date	DAYALBAGH (TIME WEIGHTED AVERAGE DATA) Air Quality Index Meteorological Parameters								Date Today:	AVAS VIKAS (SIKANDRA) (ARITHMETIC MEAN DATA) AQI Meteorological Parameters									
	August 16 – 15 Yesterday August 15 – 14	PM2.5	PM10	RH %	WS m/s	WD	T C		SR	RF	August 16 – 15 Yesterday	PM2.5	PM10	RH	ws	WD	T °C		SR	RF
							Max	Min	W/m ²	m ² mm	August 15 – 14	F 1V12.5	F 1VI 10	%	m/s	νD	Max	Min	W/m ² mm	mm
4 / 07	Today	17	10	79	4.0	N	33.1	25.8	110	7.5		29	13	83	1.1	E	33.4	25.4	91	6
4 / 97	Yesterday	42	14	84	1.3	ESE	35.0	27.1	94	26	Today									
3/34	Today	33	10	79	4.0	N	33.1	25.8	110	7.5	Yesterday									
3734	Yesterday	59	19	84	1.3	ESE	35.0	27.1	94	26		33	12	87	0.7	ESE	34.8	27.1	62	NA
Science	Today	29	09	79	4.0	N	33.1	25.8	110	7.5										
Faculty	Yesterday	59	19	84	1.3	ESE	35.0	27.1	94	26										

Good M	loderate	Unhealthy for Sensitive Groups	Unhealthy for All	Very Unhealthy for All	Hazardous for All	Hazardous for All
0 - 50 5	51 - 100	101 - 150	151 - 200	201 - 300	301 - 400	401 - 500

Views of AQI Research Group: In comparison to yesterday, concentrations of both PM_{2.5} and PM₁₀ have decreased at all locations of Dayalbagh. The Air Quality Index w.r.t. both PM_{2.5} and PM₁₀ is in the *Good* category at all three locations of Dayalbagh.

At Avas Vikas, the concentrations of both $PM_{2.5}$ and PM_{10} have marginally changed. The Air Quality Index w.r.t. both $PM_{2.5}$ and PM_{10} is in the *Good* category.

Data is not available for Sanjay Place.

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant –

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; I_{low} = Index Break point corresponding to C_{low} ; I_{high} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign