Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 17.8.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date DAYALBAGH (TIME WEIGHTED AVERAGE DATA)										Date	AVAS VIKAS (SIKANDRA) (ARITHMETIC MEAN DATA)									
	Today:	Air Qua	ality Index	Meteorological Parameters							Today:	A	QI		Meteorological Parameters						
	August 17 – 16 Yesterday	PM _{2.5}	PM ₁₀	RH %	WS m/s	WD	T °C		SR	RF	August 17 – 16 Yesterday	PM _{2.5}	PM ₁₀	RH	ws	WD	T °C		SR	RF	
	August 16 –						Max	Min	W/m ²	mm	August 16 – 15	1 1412.5	1 14110	%	m/s	,,, <u>p</u>	Max	Min	W/m ²	mm	
4/97	Today	13	06	82	2.4	SE	29.4	25.3	99	0.5											
	Yesterday	17	10	79	4.0	N	33.1	25.8	110	7.5	Today	17	11	86	1.3	NE	29.5	25.5	66	NA	
3/34	Today	25	08	82	2.4	SE	29.4	25.3	99	0.5											
	Yesterday	33	10	79	4.0	N	33.1	25.8	110	7.5											
Science	Today	21	06	82	2.4	SE	29.4	25.3	99	0.5	Yesterday	29	13	83	1.1	E	33.4	25.4	91	6	
Faculty	Yesterday	29	09	79	4.0	N	33.1	25.8	110	7.5											

Good 0 - 50 Moderate 51 - 100

Unhealthy for Sensitive Groups 101 - 150 Unhealthy for All 151 - 200 Very Unhealthy for All 201 - 300 Hazardous for All 301 - 400 Hazardous for All 401 - 500

Views of AQI Research Group: In comparison to yesterday, concentrations of both PM_{2.5} and PM₁₀ have further decreased at all locations of Dayalbagh. The Air Quality Index w.r.t. both PM_{2.5} and PM₁₀ is in the *Good* category at all three locations of Dayalbagh.

At Avas Vikas also, the concentrations of both PM_{2.5} and PM₁₀ have decreased. The Air Quality Index w.r.t. both PM_{2.5} and PM₁₀ is in the *Good* category.

In comparison to Avas Vikas, the Air Quality Index w.r.t. PM₁₀ is better at all locations of Dayalbagh, while w.r.t PM_{2.5} it is better at Vidyut Nagar.

Perused By Way of Information Only, Subject To Legalise/Legalese/"Laws of the Land".

Wednesday, 17-08-2022, 06:10 PM Received, Wednesday, 17-08-2022, 01:32 PM

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; C_{high} = Index Breakpoint corresponding to C_{low} ; C_{l