Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 26.8.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date	DAYALBAGH (TIME WEIGHTED AVERAGE DATA)								Date	SANJAY PLACE (ARITHMETIC MEAN DATA)									
	Today: August 26 – 25 Yesterday August 25 – 24	Air Qua	ality Index	Meteorological Parameters						Today:	AQI			Meteorological Parameters						
		PM2.5	PM10	RH %	WS m/s	WD	°C		SR	RF	August 26 – 25 Yesterday	DM.	DM	RH	ws	WD	T °C		SR	RF
							Max	Min	W/m ² mm	mm	-	PM2.5	PM10	%	m/s	VU	Max	Min	W/m ² mm	
4 / 97	Today	38	24	70	0.9	NNE	38.0	26.3	179	0.5	-									
-	Yesterday	29	19	71	1.2	Е	36.5	25.3	175	00	Today	66	54	69	1.7	S	35.2	27.5	193	04
3/34	Today	50	22	70	0.9	NNE	38.0	26.3	179	0.5										
3/34	Yesterday	50	18	71	1.2	E	36.5	25.3	175	00										
Science	Today	42	19	70	0.9	NNE	38.0	26.3	179	0.5	Yesterday	66	38	69	2.2	NNE	35.5	26.2	188	00
Faculty	Yesterday	42	16	71	1.2	E	36.5	25.3	175	00	1					1				

Good	Moderate	Unhealthy for Sensitive Groups	Unhealthy for All	Very Unhealthy for All	Hazardous for All	Hazardous for A
0 - 50	51 - 100	101 - 150	151 - 200	201 - 300	301 - 400	401 - 500

Views of AQI Research Group: In comparison to yesterday, concentrations of PM_{2.5} have remained constant at Prem Nagar and Science Faculty and increased slightly at Vidyut Nagar. PM₁₀ have marginally increased at all locations of Dayalbagh. The Air Quality Index w.r.t. both PM_{2.5} and PM₁₀ remains in the *Good* category at all three locations of Dayalbagh.

At Sanjay Place, the concentrations of PM_{2.5} have remained unchanged, while PM₁₀ have increased. The Air Quality Index w.r.t. PM_{2.5} remains in the *Moderate* category, while w.r.t. PM₁₀ it has changed from *Good* category to *Moderate* category.

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant –

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; I_{low} = Index Break point corresponding to C_{low} ; I_{high} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign