Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 30.8.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date	Date DAYALBAGH (TIME WEIGHTED AVERAGE DATA) Today:									Date	SANJAY PLACE (ARITHMETIC MEAN DATA)								
	Today:	Air Qua	ality Index	Meteorological Parameters							Today:	AQI Meteorological Parameters								
	August 30 – 29 Yesterday	PM _{2.5}	PM10	RH %	WS m/s	WD	T °C		SR	RF	August 30 – 29 Yesterday	PM _{2.5}	PM_{10}	RH	ws	WD	T °C		SR	RF
	August 29 – 28						Max	Min	W/m ²	mm	August 29 – 28	st 29 –	1 19110	%	m/s	,,, <u>D</u>	Max	Min	W/m ²	mm
4/97	Today	46	34	74	0.8	Е	39.8	27.0	140	2.0		82	93*	73	1.2	NNE	37.9	28	148	14.75
	Yesterday	42	50	62	1.1	N	38.0	27.6	164	00										
3/34	Today	59	29	74	0.8	E	39.8	27.0	140	2.0										
	Yesterday	50	33	62	1.1	N	38.0	27.6	164	00										
Science	Today	57	26	74	0.8	E	39.8	27.0	140	2.0	Yesterday	87	81	62	2.2	S	36.6	28.8	178	0
Faculty	Yesterday	50	33	62	1.1	N	38.0	27.6	164	00										

Good 0 - 50 Moderate 51 - 100

Unhealthy for Sensitive Groups 101 - 150 Unhealthy for All 151 - 200 Very Unhealthy for All 201 - 300 Hazardous for All 301 - 400 Hazardous for All 401 - 500

Views of AQI Research Group: At Dayalbagh sites, the increase in concentrations of $PM_{2.5}$ relative to yesterday might be ascribed to increase in Relative Humidity, lowering of Wind Speed and change in Wind Direction, while the decrease in PM_{10} may have occurred due to wash-out of these coarse particles by rain shower in the evening. The Air Quality Index w.r.t. $PM_{2.5}$ remains in the *Good* category at Vidyut Nagar and has changed to *Moderate* category at Science Faculty and Prem Nagar, while w.r.t to PM_{10} it remains in the *Good* category at all three locations of Dayalbagh.

At Sanjay Place, PM₁₀ values were available only till 2:00 am today morning. The Air Quality Index w.r.t. both PM_{2.5} and PM₁₀ (on the basis of available data) remains in the *Moderate* category.

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint $\leq C$; C_{high} = Concentration Breakpoint $\geq C$; C_{high} = Index Breakpoint corresponding to C_{low} ; C_{low} ; C_{low} ; C_{low} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign