Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 24.7.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date			D	AYAI	LBAG	H				Date	SANJAY PLACE								
	Today: July 24 – 23 Yesterday July 23 – 22	(TIME WEIGHTED AVERAGE DATA)									Todovi	(ARITHMETIC MEAN DATA)								
		Air Quality Index		Meteorological Parameters							Today:	AQI		Meteorological Parameters						
		PM _{2.5}	PM_{10}	RH %	WS m/s	WD	°C			DE	July 24 – 23	PM _{2.5}	PM ₁₀	RH %	WS m/s	WD	°C		SR W/m ²	RF
										RF	Yesterday									
							Max	Min	w/m	mm	July 23 – 22						Max	Min	vv/m	mm
4 / 97	Today	57	22	85	5.0	S	32.9	26.2	147	05	Today	76	33	75	3.1	NNE	35.5	28.2	174	06
	Yesterday	59	27	91	3.2	SSE	33.2	26.2	81	26										
3 / 34	Today	68	26	86	5.0	S	32.9	26.6	147	05										1
	Yesterday	72	34	91	3.2	SSE	32.4	26.3	81	26										
Science	Today	72	26	86	5.0	S	33.6	26.6	147	05	Yesterday	76	34	81	2.1	NNE	32.8	28.6	106	23
Faculty	Yesterday	74	31	92	3.2	SSE	31.9	26.3	81	26										

Good 0 - 50

Moderate 51 - 100 Unhealthy for Sensitive Groups 101 - 150 Unhealthy for All 151 - 200 Very Unhealthy for All 201 - 300 Hazardous for All 301 - 400 Hazardous for All 401 - 500

Views of AQI Research Group: In comparison to yesterday, there is a decrease in the concentrations of both PM_{2.5} and PM₁₀ at all locations of Dayalbagh. The Air Quality Index remains in the *Moderate* category w.r.t. PM_{2.5} while w.r.t. PM₁₀ it remains in the *Good* category at all the three locations of Dayalbagh.

At Sanjay Place also, the concentrations of both $PM_{2.5}$ and PM_{10} have marginally decreased. However, the Air Quality Index still remains in the *Moderate* category w.r.t. $PM_{2.5}$ and in the *Good* category w.r.t PM_{10} .

Perused By Way of Information Only, Subject To Legalise/Legalese/"Laws of the Land".

Sunday, 24-07-2022, 04:28 PM Received, Sunday, 24-07-2022, 12:42 PM

NOTE: 1 A continuing study conducted as part of **Dayalbagh Sigma Six Qualities and Values Model** implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\rm high} - I_{\rm low}}{C_{\rm high} - C_{\rm low}} * (C - C_{\rm low}) + I_{\rm low}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint $\leq C$; C_{high} = Concentration Breakpoint $\geq C$; C_{high} = Index Breakpoint corresponding to C_{low} ; C_{low} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign