AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 18.10.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM) Today: 17 -10-2022 to 18 -10-2022 from 9:00 a.m. to 9:00 a.m. Yesterday: 16 -10-2022 to 17 -10-2022 from 9:00 a.m. to 9:00 a.m.

L O C A T I O N			(TIME	SANJAY PLACE (ARITHMETIC MEAN DATA)																			
	AQI					Meteorological Parameters							AQI				Meteorological Parameters						
	PM2.5		PM10						T C	-		PM2.5		PM10					0	T C	_		
	Today	Yesterday	Today	Yesterday	RH %	WS m/s	WD	Max	Min	SR W/ m ²	RF mm	Today	Yesterday	Today	Yesterday	R H %	WS m/s	WD	Ma x	Min	SR W/ m ²	R F m	
4 / 97	147	156	72	79	67	0.4	W	35.7	20.2	169	0	166		122	134	57	0.2	WNW	34.6	23.2	6.0* (107)	0	
3 / 34	149	155	68	69	67	0.4	W	35.7	20.2	169	0		170										
Science Faculty	156	161	70	70	67	0.4	w	35.7	20.2	169	0												
vhich may b ategory at \ n the <i>Model</i> The pollutar <i>Inhealthy fo</i>	be due to c /idyut Naga rate catego nt concentr or All catego	ch Group: Th change in Wind ar and Prem Na rry at all sites or rations have m ory w.r.t. PM _{2.5} oneous. Value i	Direction. gar but rer f Dayalbag arginally c , and in th	The Air Qualit nains in the <i>Un</i> h. lecreased at Sa e <i>Unhealthy fo</i>	ty Index healthy j anjay Pla r Sensiti	w.r.t. PM for All cat ace also I ve Groups	12.5 has in egory at t however, s categor	nproved t Science Fa the Air (y w.r.t. PI	o <i>Unhealtl</i> iculty, whil Quality ind	hy for Se e w.r.t. P lex still r	nsitive Gro PM10 it rem remains in	the njay	erused <u>By \</u> ubject To L esday_18-11	egalise/	Legalese/"L			Land".					
Good 0 - 50ModerateUnhealthy for Sensitive Groups 101 - 150							Unhealthy for All 151 - 200				Juesday, 18-10-2022, 04:16 PM Received, Tuesday, 18-10-2022, 01 Very Unhealthy for All 201 - 300			1:32 PM Hazardous for All 301 - 400			Hazardous for All 401 - 500						

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\rm high} - I_{\rm low}}{C_{\rm high} - C_{\rm low}} * (C - C_{\rm low}) + I_{\rm low}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; I_{low} = Index Break point corresponding to C_{low} ; I_{high} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign

Communicated by Dr. Anita Lakhani, Professor, Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra.