Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 1.9.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date DAYALBAGH										Date	SANJAY PLACE								
	Today:		(TIME	RAGE	DAT	'A)		To do o	(ARITHMETIC MEAN DATA)											
		Air Qua	lity Index	Meteorological Parameters						Today:	AQI Meteorological Parameters									
	September 1 - August Yesterday August 31 - 30	PM _{2.5}	PM ₁₀	RH %	WS m/s	WD	T °C		SR	RF	September 1 - August Yesterday	PM _{2.5}	PM_{10}	RH %	WS	WD	T °C		SR	RF
							Max	Min	W/m ²	mm	August 31 – 30			% 0	m/s		Max	Min	W/m ²	mm
4 / 97	Today	46	35	66	0.7	NNE	41.7	29.1	191	00	Today	97	69	64	1.2	E	39	30.7	204	
	Yesterday	46	33	71	0.7	NE	37.9	26.9	174	3.0										00
3 / 34	Today	66	30	66	0.7	NNE	41.7	29.1	191	00										
	Yesterday	68	30	71	0.7	NE	37.9	26.9	174	3.0										
Science	Today	63	30	66	0.7	NNE	41.7	29.1	191	00		95	62	70	1.0	ESE	36.3	28.3	176	11.5
Faculty	Yesterday	63	29	71	0.7	NE	37.9	26.9	174	3.0										

Good 0 - 50

Moderate 51 - 100 Unhealthy for Sensitive Groups 101 - 150 Unhealthy for All 151 - 200 Very Unhealthy for All 201 - 300 Hazardous for All 301 - 400 Hazardous for All 401 - 500

Views of AQI Research Group: At Dayalbagh sites, concentrations of PM_{2.5} and PM₁₀ are more or less similar to yesterday despite marginal changes in meteorological parameters. The Air Quality Index w.r.t. PM_{2.5} remains in the *Good* category at Vidyut Nagar and in the *Moderate* category at Science Faculty and Prem Nagar, while w.r.t to PM₁₀ it remains in the *Good* category at all three locations of Dayalbagh.

At Sanjay Place concentrations of PM_{10} have appreciably increased. The Air Quality Index w.r.t. both $PM_{2.5}$ and PM_{10} remains in the *Moderate* category.

Better AQI at Dayalbagh relative to Sanjay Place may be attributed to the control measures (misting, spraying and restricted vehicular movement) being adopted at Dayalbagh.

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; C_{high} = Index Breakpoint corresponding to C_{low} ; C_{l