Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 11.9.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 48 hrs (6:00 AM to 6:00 AM)

L 0	Today: September 11 - 10 Yesterday September 10 - 9	Duration M = Daytime (6 am - 6 pm) E = Night time (6 pm - 6 am)	DAYALBAGH (TIME WEIGHTED AVERAGE DATA)									Date Today:	Duration M = Daytime	M = (ARITHMETIC MEAN DATA)								
C A			A(ĮΙ		Met	eorologi	eal Parameters				September	(6 am – 6	AQI		Meteorological Parameters						
T			PM _{2.5}	PM ₁₀	RH %	WS m/s	WD	T °C		SR	R F	11 – 10 Yesterday	pm) E = Night time	P		DII	WS		T °C		SR	R F
O N								Ma x	Min	W/ m ²	m m	September 10 – 9	(6 pm – 6 am)	M 2.	PM ₁₀	RH %	m/s	WD	Ma x	Min	W/ m ²	m m
4 / 97	Today Yesterday Today Yesterday	E	66	33	76	1.1	SE	32.0	28.1	05	0	0	E 10			72	2.2	E	34.0	29.7	07	0
		M	74	34	62	1.6	SE	38.5	29.0	316				107	56							
		E	89	50	76	0.9	SE	31.8	21.8	05												
		M	95 87	45	60	1.5	SE	39.7	29.3	295			3.6	110	5.0	64	4.5	_	20.7	20	262	
3 / 34		E M	95	37 39	76 62	1.1	SE SE	32.0 38.5	28.1 29.0	05 316			M	110	56	61	1.5	E	38.7	30	362	0
		E	110	52	76	0.9	SE SE	31.8	29.0	05												+
		M	124	51	60	1.5	SE	39.7	29.3	295			E M	127	58	72	0.6	ENE	33.7	29.9	08	0
Scie	Today	E	95	43	76	1.1	SE	32.0	28.1	05												
nce		M	105	45	62	1.6	SE	38.5	29.0	316												+
Fac ulty	Yesterday	E	181	79	76	0.9	SE	31.8	21.8	05	0			147	65	61	1.5	Е	39.1	30.5	361	0
		M	158	78	60	1.5	SE	39.7	29.3	295	0											
Good 0 - 50		Moderate 51 - 100	Unhealthy for Sensitive Groups 101 - 150				•		Unhealthy for All 151 - 200				Very Unhealthy for All 201 - 300			Hazardous for All 301 - 400				Hazardous for All 401 - 500		

Views of AQI Research Group: A reduction in particulate matter concentrations appears to have occurred due to dispersion. However, as the concentrations were high at Science Faculty, the dispersion and settling of particles appears to be taking a longer time. Further, as the festive activities and celebrations related to Ganesha Chaturthi are over, the Air Quality Index appears to have improved as this pollution generating activity is over.

At Sanjay Place also the concentrations of particulate matter have marginally decreased.

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint $\leq C$; C_{high} = Concentration Breakpoint $\geq C$; C_{high} = Index Breakpoint corresponding to C_{low} ; C_{low} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign