Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 2.9.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date			D	AYAI	LBAG	H				Date	SANJAY PLACE								
	To do o	(TIME WEIGHTED AVERAGE DATA)									Tadam	(ARITHMETIC MEAN DATA)								
	Today:	Air Qua	ality Index	Meteorological Parameters						Today:	AQI		Meteorological Parameters							
	September 2 - 1 Yesterday September 1 - August 31	PM _{2.5}	PM ₁₀	RH %	WS m/s	WD	T °C		SR	RF	September 2 – 1 Yesterday	PM _{2.5}	PM ₁₀	RH	ws	WD	T °C		SR	RF
							Max	Min	W/m ²	mm	September 1 – August 31			%	m/s		Max	Min	W/m ² m	mm
4/97	Today	38	22	72	0.9	Е	41.3	27.5	122	Trace										
	Yesterday	46	35	66	0.7	NNE	41.7	29.1	191	00	Today	74	47	70	1.9	NE	39.1	28.6	140	0.5
3/34	Today	61	23	72	0.9	Е	41.3	27.5	122	Trace										
	Yesterday	66	30	66	0.7	NNE	41.7	29.1	191	00										
Science	Today	57	20	72	0.9	Е	41.3	27.5	122	Trace	Yesterday	97	69	64	1.2	E	39	30.7	204	00
Faculty	Yesterday	63	30	66	0.7	NNE	41.7	29.1	191	00										

Good 0 - 50

Moderate 51 - 100 Unhealthy for Sensitive Groups 101 - 150 Unhealthy for All 151 - 200 Very Unhealthy for All 201 - 300 Hazardous for All 301 - 400

Hazardous for All 401 - 500

Views of AQI Research Group: At Dayalbagh sites, PM_{2.5} and PM₁₀ concentrations have likely decreased due to a decrease in solar radiation intensity, which may have decreased the production of photochemically produced secondary particulate matter while a change in wind direction and a slight increase in wind speed may have helped to disperse pollutants. Although, the Air Quality Index has improved, it still falls in the *Good* category w.r.t. PM_{2.5} at Vidyut Nagar, the *Moderate* category at Science Faculty and Prem Nagar, and in Good category w.r.t. PM₁₀ at all three Dayalbagh locations.

The concentrations of PM_{2.5} and PM₁₀ have decreased at Sanjay Place also. The Air Quality Index has improved to the *Good* category w.r.t. PM₁₀, although it still falls in the *Moderate* category w.r.t. PM_{2.5}.

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; C_{high} = Index Breakpoint corresponding to C_{low} ; C_{l