AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 22.12.2022 (BASED ON US-EPA AOI STANDARDS AND THE DAYALBAGH AOI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

Today: 21-12-2022 to 22 -12-2022 from 9:00 a.m. to 9:00 a.m. Yesterday: 20 -12-2022 to 21-12-2022 from 9:00 a.m. to 9:00 a.m.

	DAYALBAGH												SANJAY PLACE AND AVAS VIKAS											
L	(TIME WEIGHTED AVERAGE DATA)											О	(ARITHMETIC MEAN DATA)											
0	AQI				Meteorological Parameters							C		AQI				Meteorological Parameters						
C	PM _{2.5}							°C				A							T °C					
A			I	PM_{10}						_		T	PM _{2.5}		PM ₁₀					'				
I O N												0												
	Today	Yesterday	Today	Yesterday	RH %	WS m/s	WD	Ma x	Min	SR W/m²	R F	N	Today Yestero		terday Today	Yesterday	RH %	WS m/s	W D	Max	Min	SR W/	RF	
											m			Yesterday									m	
										VV/111	m											m ²	m	
4 / 97	154 (7%↓)	157	74 (7%↑)	71	75	0.4	WNW	23. 7	9.4	102	0	Sanjay Place	155 (25%↓)	166	89 (30%↓)	117	68	0.9	ENE	22.3	10.7	22	0	
3/34	144	154	61	65	75	0.4	WNW	23.	9.4	102	0 -				, , , , , , , , , , , , , , , , , , ,									
	(14%↓)	251	(6%↓)	3 3	,,	0.4	301400	7	J. 4	102		Avas	160*	174	74 (27%↓)		76	0.6	ESE	23.1	10.8	54		
Science	154	158	59 (7%)	62	75	0.4	WNW	23.	9.4	102	0	Vikas	100			95							0	
Faculty	(11%↓)		(7%↓)					/																

Views of AQI Research Group: Concentrations of Particulate matter have decreased at all sites of Dayalbagh except PM₁₀ at Vidyut Nagar which has slightly increased. The Air Quality Index w.r.t. PM_{2.5} has improved to Unhealthy for Sensitive Groups at Prem Nagar but remains in the *Unhealthy for All* category at Vidyut Nagar and Science Faculty, while w.r.t. PM₁₀ it remains in the *Moderate* category at all sites of Dayalbagh. Average Visibility yesterday was 1.3 Kms, it improved to 1.6 Kms today.

 Data for PM_{2.5} was only available till 4:00 pm yesterday at Avas Vikas, Bodla. Concentrations of Particulate matter have decreased at Sanjay Place and Avas Vikas, Bodla. The Air Quality Index w.r.t PM_{2.5} at both these sites remains in the *Unhealthy for All* category while w.r.t PM₁₀ it has improved to the *Moderate* category at Sanjay Place and remains in this category at Avas Vikas, Bodla.

Values in parentheses indicate the percentage change in the pollutant concentrations with respect to yesterday. ↑indicates increase while ↓ indicates decrease in pollutant concentrations. Percentage change has not been shown w.r.t. AQI values as the breakpoints for the different categories are not evenly distributed.

Good 0 - 50

Moderate 51 - 100 Unhealthy for Sensitive Groups 101 - 150 Unhealthy for All 151 - 200 Very Unhealthy for All 201 - 300

Hazardous for All 301 - 400 Hazardous for All 401 - 500

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\rm high} - I_{\rm low}}{C_{\rm high} - C_{\rm low}} * (C - C_{low}) + I_{low}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; C_{high} = Concentration Breakpoint \geq C; C_{high} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign