AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 24.12.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM) Today: 23-12-2022 to 24 -12-2022 from 9:00 a.m. to 9:00 a.m. Yesterday: 22 -12-2022 to 23-12-2022 from 9:00 a.m. to 9:00 a.m.

						BAGH						L	SANJAY PLACE AND AVAS VIKAS										
L O C A T I O N			(TIME QI	TED F	FED AVERAGE DATA) Meteorological Parameters						O C		(ARITHMETIC MEAN DATA) AQI Meteorological Parameters										
	PM _{2.5}			PM10								A T I	PM _{2.5}			PM10				°C			
	Today	Yesterday	Today	Yesterday	RH %	WS m/s	WD	Ma x	Min	SR W/m ²	R F m		Today	Yesterday	Today	Yesterday	RH %	WS m/s	W D	Max	Min	SR W/ m ²	RF m m
4 / 97	112 (27%↓)	149	55 (65%↓)	70	70	0.6	WNW	23. 3	8.7	112	0	Sanjay Place	129 (21%↓)	153	73 (19%↓)	85	63	1.6	ENE	22.9	9.3	23	0
3/34	102 (26%↓)	134	47 (28%↓)	59	70	0.6	WNW	23. 3	8.7	112	0									'	 '	<u> </u> '	$\left - \right $
Science Faculty	124 (13%↓)	149	46 (28%↓)	58	70	0.6	WNW	23. 3	8.7	112	0	- Avas Vikas	129 (24%↓)	154	58 (34%↓)	76	72	0.8	E	23.1	9.9	57	0
Index w.r.t. P category at Vi Average Visib Concentration has improved Values in par indicates decr categories an	PM _{2.5} remains Vidyut Nagar a ibility yesterda ons of Particu d to the Unher arentheses ind crease in poll	ns in the Unhealth and has improved day was 1.5 Kms, i ulate matter have realthy for Sensitiv ndicate the perce illutant concentrat ly distributed.	Ithy for Sensiti ed to the Good , it increased to ve decreased a ive Groups cate centage chang	trations of Particula <i>itive Groups</i> categ <i>od</i> category at Pred to 1.9 Kms today. at Sanjay Place an ategory while w.r.t <i>inge in the polluta</i> <i>entage change has</i>	egory at all em Nagar a y. and Avas Vik at PM ₁₀ it re tant concer as not been	Il sites of D and Science /ikas, Bodla remains in t <i>entrations</i> w	Dayalbagh, w ce Faculty. a also. The Air the Moderate with respect w.r.t. AQI va	while w.r.t. Air Quality Ir ate category ct to yester	t. PM₁0 it rem Index w.r.t PM ry. rerday. ↑indica	mains in the PM _{2.5} at both t <i>icates increas</i>	e Moder these s use whil e differ	erate sites ile↓ erent		Very Unhealthy	v for All		Hazar	rdous for All	11		Hazardous fo	for All	
Good 0 - 50 Moderate 51 - 100 Unhealthy for Sensitive Groups 101 - 150 Unhealthy for A 151 - 200 NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation. 2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison calculation.											- 200		anjay Place V	201 - 300 301 - 400 401 - 500						1			

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\rm high} - I_{\rm low}}{C_{\rm high} - C_{\rm low}} * (C - C_{\rm low}) + I_{\rm low}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; I_{low} = Index Break point corresponding to C_{low} ; I_{high} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign

Communicated by Dr. Anita Lakhani, Professor, Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra.