AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 25.12.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM) Today: 24-12-2022 to 25 -12-2022 from 9:00 a.m. to 9:00 a.m. Yesterday: 23 -12-2022 to 24-12-2022 from 9:00 a.m. to 9:00 a.m.

L	DAYALBAGHL(TIME WEIGHTED AVERAGE DATA)O												SANJAY PLACE AND AVAS VIKAS (ARITHMETIC MEAN DATA)										
O C A T I O N		Meteorological Parameters							C	AQI					Meteorological Parameters								
	PM2.5		PM10						T C	-		A T I	PM2.5		PM10						r C		
	Today	Yesterday	Today	Yesterday		WS m/s	WD .	Ma x	Min	SR W/m ²	R F m	O N	Today	Yesterday	Today	Yesterday	RH %	WS m/s	W D	Max	Min	SR W/ m ²	RF m m
4 / 97	124 (12%↑)	112	62 (20%↑)	55	67	1.1	WNW	22. 3	6.9	107	0	Sanjay Place	112 (14%↓)	129	64 (18%↓)	73	66	3.5	ENE	21	6.7	23	0
3 / 34	117 (16%↑)	102	56 (27%↑)	47	67	1.1	WNW	22. 3	6.9	107	0										<u> </u>	<u> </u>	
Science Faculty	129 (4% ↑)	124	56 (27%↑)	46	67	1.1	WNW	22. 3	6.9	107	0	Avas Vikas	127 (2%↓)	129	62 (10%↑)	58	71	1.0	ENE	21.7	7.0	58	0
w.r.t. PM _{2.5} re the three site Average Visib Concentratio The Air Quali Moderate cat Values in pau indicates deci categories au	emains in thes. bility yesterd ons of Particu ity Index w.i tegory. rentheses in rease in pol re not even! ood - 50	e Unhealthy for S ay was 1.9 Kms, i late matter have .t PM _{2.5} at both dicate the perce lutant concentrat y distributed. Mode 51 -	Sensitive Gro it increased t e decreased these sites entage chang tions. Percer erate 100	rations of Particu oups category at to 2.2 Kms today. at Sanjay Place a remains in the ge in the polluto ntage change ha.	all sites o and Avas \ Unhealthy ant conce. s not beer Unhealth	f Dayalbaş Vikas, Bod V for Sensi ntrations n shown v 101 - 150	gh, while w.r lla except PN itive Groups with respect w.r.t. AQI vo	t. PM ₁₀ it 1 ₁₀ which H category w t to yester alues as the	is in the <i>M</i> nas increase while w.r.t ⊨ rday. <i>↑india</i> the breakpo	oderate cate d at Avas Vik PM ₁₀ it rema cates increas	gory a kas, Bo hins in the white differ	nt all bdla. the ile ↓ rent		Very Unhealthy 201 - 300				rdous for All	I		Hazardous f 401 - 50		

NOTE: 1 A continuing study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\rm high} - I_{\rm low}}{C_{\rm high} - C_{\rm low}} * (C - C_{\rm low}) + I_{\rm low}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; I_{low} = Index Break point corresponding to C_{low} ; I_{high} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign

Communicated by Dr. Anita Lakhani, Professor, Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra.