AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 29.12.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM) Today: 28-12-2022 to 29 -12-2022 from 9:00 a.m. to 9:00 a.m. Yesterday: 27 -12-2022 to 28-12-2022 from 9:00 a.m. to 9:00 a.m.

L O C A T I O N	DAYALBAGHL(TIME WEIGHTED AVERAGE DATA)O													SANJAY PLACE AND AVAS VIKAS (ARITHMETIC MEAN DATA)										
	AQI				· · · · · · · · · · · · · · · · · · ·							C		AQI				Meteorological Parameters						
	PM2.5		PM ₁₀					°	r C	-		A T I	PM _{2.5}		PM ₁₀					0	r C			
	Today	Yesterday	Today	Yesterday	RH %	WS m/s	WD	Max	Min	SR W/ m ²	R F m	O N	Today	Yesterday	Today	Yesterday	RH %	WS m/s	W D	Max	Min	SR W/ m ²	RF m m	
4 / 97	99 (19%↓)	119	47 (34%↓)	62	66 0.8 WN 2	24.2	8.5	92	92 0	Sanjay Place	122 (6%↓)	129	129 75 (11%↑)	70 5	55	1.6	NW	23	11.0	24	0			
3 / 34	110 (8%↑)	102	48 (2%↓)	49	66	0.8	WN W	24.2	8.5	92	0				77			 						
Science Faculty	129 (4%↑)	119	48 (4%↓)	50	66	0.8	WN W	24.2	8.5	92		Avas Vikas	157 (1%↑)	156	(8%↑)	73	67	0.7	NE	22.7	9.3	62	0	
Science Facult Index w.r.t. PI Faculty while * Concentrati changed at Av category at Sa Values in pare	ty PM _{2.5} has M _{2.5} improve w.r.t. PM ₁₀ if ions of PM ₁₀ vas Vikas, Bo anjay Place a entheses ind	earch Group increased and Pl ed to the Modera t is in the Good ca were available a dla, while PM ₁₀ h nd is in the Unhe- icate the percent as. Percentage ca	M ₁₀ has slig te category ategory at al after 2:00 p as slightly ir althy for All age change	htly decreased. A at Vidyut Nagar II the three sites. m yesterday at A ncreased at both category at Avas in the pollutant	verage Vi but remain vas Vikas the sites. Vikas, Boo concentra	isibility ye ins in the 5, Bodla. C The Air Qu dla, while tions with	sterday w Unhealthy Concentrat Jality Inde w.r.t PM ₁₀	as 2.4 Kms, i <i>i for Sensitive</i> ions of PM _{2.} x w.r.t PM _{2.5} i t remains in o yesterday	it increased e Groups cat s have decre remains in t n the Moder (indicates in	to 2.6 Km tegory at F eased at S he Unheau ate catego acrease wh	Is today Prem Na Ganjay P Ithy for Dry at bo hile \downarrow in	. The Air Qualiti agar and Science lace and slight <i>Sensitive Group</i> oth the sites. <i>dicates decreas</i>	ey Se Ny Se											
Gc	Good Mod							for Sensitive Groups 101 - 150			11 - 200	All		Very Unhealthy 201 - 300			Hazardous for All 301 - 400			Hazardous for All 401 - 500				

calculation.

3 Formula for AQI calculation for a Pollutant -

$$\mathbf{I} = \frac{\mathbf{I}_{\text{high}} - \mathbf{I}_{\text{low}}}{\mathbf{C}_{\text{high}} - \mathbf{C}_{\text{low}}} * (\mathbf{C} - \mathbf{C}_{\text{low}}) + \mathbf{I}_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; I_{low} = Index Break point corresponding to C_{low} ; I_{high} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign

Communicated by Dr. Anita Lakhani, Professor, Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra.