AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 31.12.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM) Today: 30 -12-2022 to 31 -12-2022 from 9:00 a.m. to 9:00 a.m. Yesterday: 29 -12-2022 to 30-12-2022 from 9:00 a.m. to 9:00 a.m.

				DA	YAL	BAGH	I					L	SANJAY PLACE AND AVAS VIKAS										
L	(TIME WEIGHTED AVERAGE DATA) O												(ARITHMETIC MEAN DATA)										
0		AQI				Meteorological Parameters						С		AQI				Meteorological Parameters					
C A T I N	PM2.5		PM10					°C		-		A T I	F	PM _{2.5}		PM ₁₀				°,	°C		
	Today	Yesterday	Today	Yesterday	RH %	WS m/s	WD	Max	Min	SR W/ m ²	R F m m	I O N	Today	Yesterday	Today	Yesterday	'esterday RH %	WS m/s	W D	Max	Min	SR W/ m ²	RF m m
4 / 97	166 (60%↑)	144	82 (72%↑)	57	74	1.1	WN W	25.3	11.3	67	0	Sanjay Place	161 (38%↑)	147	96 (18%↑)	85	77	1.8	ENE	23.5	10.7	21	0
3 / 34	157 (45%↑)	127	76 (51%↑)	58	74	1.1	WN W	25.3	11.3	67	0				82		<u> </u>		<u> </u> '	<u> </u> '	'	<u> </u> '	++
Science Faculty	165 (27%↑)	144	68 (16%↑)	62	74	1.1	WN W	25.3	11.3	67	0	- Avas Vikas	165 (43%↑)	152	82 (34%†)	67	81	0.8	ENE	26.1	11.5	52	0
Wind Directio Kms, it decrea category at all Concentration Unhealthy for category at bo Values in part decrease in por	Views of AQI Research Group: Concentrations of both PM ₂₅ and PM ₁₀ have increased at all sites of Dayalbagh probably due to change in Wind Direction and increase in Relative Humidity (Very low Visibility (<60m) was recorded between 12 - 2am today). Average Visibility yesterday was 2.0 Kms, it decreased to 0.9 Km today. The Air Quality Index w.r.t. PM _{2.5} changed to the <i>Unhealthy for All</i> category while w.r.t. PM ₁₀ it is in the <i>Moderate</i> category at all the three sites. Concentrations of Particulate matter have also increased at Sanjay Place and Avas Vikas, Bodla. The Air Quality Index w.r.t PM _{2.5} changed to the <i>Unhealthy for All</i> category at Sanjay Place and remains in the <i>Unhealthy for All</i> category at Avas Vikas, Bodla, while w.r.t PM ₁₀ it remains in the <i>Moderate</i> category at both the sites. Values in parentheses indicate the percentage change in the pollutant concentrations with respect to yesterday ↑indicates increase while ↓ indicates decrease in pollutant concentrations. Percentage change has not been shown w.r.t. AQI values as the breakpoints for the different categories are not evenly distributed.																						
	GoodModerateUnhealthy for Sensitive GroupsUnhealthy for All0 - 5051 - 100101 - 150151 - 200									All	Very Unhealthy for All 201 - 300				Hazardous for All 301 - 400				Hazardous for All 401 - 500				
	United State		l Protection A	albagh Sigma Six (Agency (USEPA) n				•		or fair com	nparisor	า with UPPCB Sส	anjay Place V	Veather Station r	readings, the	ir PM _{2.5} concentr	ation reac	Jings are f	ied in USE	PA online ca	lculator for .	AQI	-

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where: I = Air Quality Index; C = Pollutant Concentration (PM_{2.5}); C_{low} = Concentration Breakpoint \leq C; C_{high} = Concentration Breakpoint \geq C; I_{low} = Index Break point corresponding to C_{low} ; I_{high} = Index Breakpoint corresponding to C_{high} ; *Multiplication Sign

Communicated by Dr. Anita Lakhani, Professor, Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra.