Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 21.12.2021 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$

Site Location	Sampling Time (24 hrs)	DAYALBAGH (TIME WEIGHTED AVERAGE DATA)										SANJAY PLACE (ARITHMETIC MEAN DATA)									
		AQI				Meteorological Parameters @ Dayalbagh Today						AQI				Meteorological Parameters @ Sanjay Place Today					
		PM _{2.5}		PM ₁₀		Yesterday					P	PM _{2.5} PM		M_{10}	Yesterday						
		Today Dec 21 – Dec 20	Yesterday Dec 20 – Dec 19	Today Dec 21 – Dec 20	Yesterday Dec 20 – Dec 19	RH %	WS m/s	WD	T °C	SR W/ m²	RF mm	Today Dec 21 – Dec 20	Yesterday Dec 20 – Dec 19	Today Dec 21 – Dec 20	Yesterday Dec 20 – Dec 19	RH %	WS m/s	WD	T °C	SR W/m²	RF mm
4 / 97	09:00 am - 09:00am	194 UH	158 UH	124 US	119 US	65 60	1.1 2.8	WNW WNW	13 13	46 44	0	257 VUH	156 UH	250 VUH	82 M	<u>51</u> <u>54</u>				113 117	
3 / 34	09:00 am - 09:00am	193 UH	161 UH	137 US	115 US	69	1.1 2.8	WNW WNW	13 12	63 64	0						0.9 2.2	ESE NE	10 10		0
Science Faculty	09:00 am - 09:00 am	183 UH	154 UH	96 M	106 US	71 66	2.3 3.1	NE NE	12 12	49 48	0										

Views of AQI Research Group: Fog has resulted in elevated concentrations and deterioration of air quality at both sites. The deterioration at Sanjay Place being severe over the last 24 hours. The DEI Engineering Faculty will help measure the Solar Radiation at Faculty of Science with its existing Pyranometer over the next few days.

Remarks of Revered Chairman-ACE:

esday, 21 December 2021, 12:23 PM

ecember 2021,

Good -G

Moderate- M

ensitive Groups- US

Unhealthy for All-UH

Very Unhealthy for All-VUH

Hazardous for All- H

Hazardous for All-H

NOTE: 1 A continuous study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings,

their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation 3 Formula for AQI calculation for a Pollutant –

. . .

where, I = Air Quality Index, C=Pollutant Concentration (PM2.5), Clow=Concentration Breakpoint ≤C, Chigh=Concentration Breakpoint ≥C, Ilow=Index Break point corresponding to Clow, Ihigh=Index Breakpoint corresponding to Chigh

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$