Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 1.3.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date			D	AYAI	BAG	Η				Date	SANJAY PLACE								
	Tadaw		(TIME	RAGE	DAT	Ά)		Tedeu	(ARITHMETIC MEAN DATA)											
	Today:	AQI		Meteorological Parameters							loday:	AQI		Meteorological Parameters						
	March 1 - Feb 28 <mark>Yesterday</mark>	PM2.5	PM2.5 PM10	RH %	WS m/s	WD	T °C		SR	RF	March 1 - Feb 28 Yesterday	PM2.5	PM ₁₀	RH ø⁄	WS	WD	T °C		SR	RF
	Feb 28 - 27						Max	Min	W/m ²	mm	Feb 28 - 27			70	111/8		Max	Min	W/m ² n	mm
4 / 97	Today	107	63	60	2.5	SE	29.1	12.9	99	0	Today	151	83	52	2.5	N	25.8	13.5	154	0
	Yesterday	91	53	67	3.3	E	27.5	12.2	81	0										
3 / 34 Science Faculty	Today	134	58	65	2.5	SE	25.2	13.4	96	0										
	Yesterday	99	46	68	3.3	E	26.9	12.5	96	0										
	Today	117	55	65	2.5	SE	25.2	12.8	102	0	Yesterday	115	72	60	3.3	N	27.2	12.9	135	0
	Yesterday	91	44	71	3.3	E	26.9	12.5	94	0										

Views of AQI Research Group: Eight day in a row the AQI at Dayalbagh remained better than that at Sanjay Place for both Particulate Pollutants. At Dayalbagh, change in Wind Direction and slight decrease in Wind Speed seem to be the reason for increase in AQI of both Particulate Pollutants. Partly, the increase could be due to the base effect (Monday over Sunday - because on weekdays, DEI-bound vehicular traffic increases. Similarly at Sanjay Place the weekday commercial activity is higher compared to Sunday).

Remarks of Revered Chairman-ACE:

Received: Tuesday, 1 March 2022, 10:49 AM

Tuesday, 1 March 2022, 6:00 PM

Good -G

Unhealthy for All-

Hazardous for All- HZ

Hazardous for All-HZ

NOTE: 1 A continuous study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings,

their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\rm high} - I_{\rm low}}{C_{\rm high} - C_{\rm low}} * (C - C_{\rm low}) + I_{\rm low}$$

where, I = Air Quality Index, C=Pollutant Concentration (PM2.5), Clow=Concentration Breakpoint ≤C, Chigh=Concentration Breakpoint ≥C, Ilow=Index Break point corresponding to Clow, Ihigh=Index Breakpoint corresponding to Chigh