Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 11.5.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date	DAYALBAGH (TIME WEIGHTED AVERAGE DATA)									Date	SANJAY PLACE								
	Today: May 11 - 10 Yesterday May 10 - 9	Air Qua	lity Index	Meteorological Parameters							Today:	AQI		(ARITHMETIC MEAN DATA) Meteorological Parameters						
		PM2.5	PM10	RH %	WS m/s	WD	т °с		SR	RF	May 11 – 10 Yesterday	PM2.5	PM ₁₀	RH	ws	WD	T °C		SR	RF
							Max	Min	W/m ²	V/m ² mm	May 10 – 9			%	m/s		Max	Min	W/m ² r	mm
4 / 97	Today	68	42	50	2.6	S	40.0	29.9	143	0	Today	132	92	44	2.9	N	43.0	31.7	187	0
	Yesterday	72	44	50	3.0	SSE	40.9	30.0	130	0										
3 / 34 Science Faculty	Today	84	33	51	2.6	S	39.9	29.7	175	0										
	Yesterday	91	36	50	3.0	SSE	40.0	29.8	161	0										
	Today	84	34	51	2.6	S	39.8	29.2	166	0	Yesterday	147	97	45	3.4	S	43.5	31.0	189	0
	Yesterday	95	39	50	3.0	SSE	40.5	29.7	153	0										

Views of AQI Research Group: The PM_{2.5} and PM_{10.0} AQI has decreased marginally across all locations probably due to change in Wind Direction. AQI w.r.t to PM_{2.5} at the three Dayalbagh sites is in the *Moderate Category* while w.r.t to PM_{10.0} all the three locations are in the *GOOD Category*.

Received: Wednesday, 11 May 2022, 12:42 PM Perused: Subject to Legalese / Legalise / "Laws of the Land"

Good -G

Moderate- M

Unhealthy for Sensitive Groups- UHS

Unhealthy for All- UHA

Very Unhealthy for All-VUHA

Hazardous for All- HZA

Wednesday, 11 May 2022, 3:35 PM

Hazardous for All-HZA

NOTE: 1 A continuous study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings,

their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation 3 Formula for AQI calculation for a Pollutant –

Remarks of Revered Chairman-ACE:

where, I = Air Quality Index, C=Pollutant Concentration (PM2.5), Clow=Concentration Breakpoint ≤C, Chigh=Concentration Breakpoint ≥C, Ilow=Index Break point corresponding to Clow, Ihigh=Index Breakpoint corresponding to Chigh

 $I = \frac{I_{high} - I_{low}}{C_{high} - C_{low}} * (C - C_{low}) + I_{low}$