Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 14.5.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00)

AM	to	9:0	0 AM	n
		7.0	O 1 11-1	

	Date		(11)	H				Date												
	Today:	(TIME WEIGHTED AVERAGE DATA) Air Quality Index Meteorological Parameters							Today:	A	(ARITHMETIC MEAN DATA) AQI Meteorological Parameters									
May 14 – 13 Yesterday May 13 – 12	PM _{2.5} PM ₁₀	PM ₁₀	RH %	WS	WD	T °C		SR	RF	May 14 – 13 Yesterday	PM _{2.5}	PM_{10}	RH	WS	WD	T °C		SR	RF	
	May 13 – 12			70	m/s		Max	Min	W/m ² m	mm	May 13 – 12			%	m/s		Max	Min	W/m ² mm	mm
4 / 97	Today	76	66	39	3.7	SSE	44.8	32.4	137	0										
	Yesterday	70	45	50	2.9	SE	44.9	29.3	139	0	Today	156	137	36	2.2	ENE	47.9	33.6	207	0
3/34	Today	99	52	40	3.7	SSE	44.5	31.9	156	0										
3734	Yesterday	91	37	50	2.9	SE	44.6	29.2	163	0										
Science	Today	93	52	40	3.7	SSE	44.5	31.4	157	0	Yesterday	139	101	45	3.4	N	46	30.6	195	0
Faculty	Yesterday	93	39	50	2.9	SE	44.6	29.3	156	0										

Views of AQI Research Group: Both PM_{2.5} and PM₁₀ concentrations have increased at the three Dayalbagh sites as well as at Sanjay Place. This increase is greater for the PM₁₀ particles. The increase might be attributable to change in Wind Direction and increase in Wind Speed resulting in resuspension of soil particles. AQI w.r.t to both PM_{2.5} and PM₁₀ at the Dayalbagh sites is in the *Moderate* category. Air Quality at Sanjay Place w.r.t PM_{2.5} is in the *Unhealthy for All* category and in the Unhealthy for Sensitive Groups Category w.r.t PM₁₀.

Remarks of Revered Chairman-ACE:

Received: Saturday, 14-05-2022, 12:22 PM

Perused: Subject to Legalese / Legalise / "Laws of the Land"

Saturday, 14-05-2022, 02:06 PM

Good -G

Moderate- M

Unhealthy for Sensitive Groups- UHS

Unhealthy for All- UHA

Very Unhealthy for All-VUHA

Hazardous for All- HZA

Hazardous for All-HZA

NOTE: 1 A continuous study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

 $where, I = Air\ Quality\ Index,\ C=Pollutant\ Concentration\ (PM2.5),\ Clow=Concentration\ Breakpoint\ \le C,\ Chigh=Concentration\ Breakpoint\ \ge C,\ Ilow=Index\ Breakpoint\ corresponding\ to\ Clow,\ Ihigh=Index\ Breakpoint\ corresponding\ to\ Chigh$