Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 4.5.2022 (BASED ON US-EPA AQI STANDARDS AND THE DAYALBAGH AQI COLOUR CODE)

Permissible Limits (24 Hour Mean): $PM_{10} = 150$; $PM_{2.5} = 35$, all units are in $\mu g/m^3$ Sampling Duration = 24 hrs (9:00 AM to 9:00 AM)

	Date		(H				Date												
	Today: May 4 – 3 Yesterday		(TIME WEIGHTED AVERAGE DATA)									(ARITHMETIC MEAN DATA)								
			Quality	Meteorological Parameters							May 4 – 3	Air Quality Index		Meteorological Parameters						
			ıdex		J															
	May 3 – 2										May 3 – 2									
		PM _{2.5}	PM ₁₀	RH %	WS m/s	WD	T °C		SR W/	RF mm		PM _{2.5}	PM ₁₀	RH %	WS m/s	WD	T °C		SR W/m²	RF mm
							Max	Min	m ²								Max	Min	VV/III	11111
4 / 97	Today	82	80	50	3.6	W	41.1	30.5	131	0										
	Yesterday	70	61	47	2.9	NNW	43.4	29.6	161	0	Today	164	196	45	2.7	NNE	42.4	32.4	157	0
3 / 34	Today	110	60	52	3.7	W	40.1	30.4	122	0										
	Yesterday	84	44	48	2.9	NNW	43.1	29.4	164	0	_									
Science	Today	107	60	52	3.7	W	40.1	30.3	125	0	Yesterday	155	153	43	3.0	NNE	45.4	31.2	194	0
Faculty	Yesterday	89	46	48	2.9	NNW	43.0	29.1	162	0										

Views of AQI Research Group: Across all locations, the AQI for both the micron Particulate Pollutants has increased compared to yesterday probably due to change in Wind Direction, increase in Relative Humidity and decrease in Maximum Temperature. The Air Quality at Sanjay Place has remained in the *Unhealthy for All* w.r.t PM_{2.5} as well as PM_{10.0}.

Remarks of Revered Chairman-ACE:

Received: Wednesday, 4 May 2022, 10:45 AM
Perused: Subject to Legal se / Legalise / "Laws of the Land"

Wednesday, 4 May 2022, 3:35 PM

Good -G

Moderate- M

Unhealthy for Sensitive Groups- UHS

Unhealthy for All- UHA

Very Unhealthy for All-VUHA

Hazardous for All- HZA

Hazardous for All-HZA

NOTE: 1 A continuous study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings,

their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation

3 Formula for AQI calculation for a Pollutant –

$$I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$$

where, I = Air Quality Index, C=Pollutant Concentration (PM2.5), Clow=Concentration Breakpoint ≤C, Chigh=Concentration Breakpoint ≥C, Ilow=Index Break point corresponding to Clow, Ihigh=Index Breakpoint corresponding to Chigh