Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 11.09.2021

Site Location	Sampling Time (24 hrs)	DAYALBAGH (TIME WEIGHTED AVERAGE DATA)								SANJAY PLACE (ARITHMETIC MEAN DATA)							
		AQI On The Basis of PM _{2.5} Concentration		Meteorological Parameters @ Dayalbagh						AQI On The Basis of PM _{2.5} Concentration		Meteorological Parameters @ Sanjay Place					
		Today Sep 11- Sep 10	Yesterday Sep 11- Sep 10	RH %	WS m/s	WD	T °C	SR W/ m ²	RF mm	Today Sep 11- Sep 10	Yesterday Sep 11- Sep 10	RH %	WS m/s	WD	°C	SR W/m²	RF mm
4 / 97	12:00 noon 12:00 noon	80 Satisfactory	112 Moderate	82	4.3	ESE	28	110	1								
3 / 34	12:00 noon - 12:00 noon	66 Satisfactory	89 Satisfactory	83	3.2	ESE	28	100	1	68 Satisfactory	91 Satisfactory	76	3.1	WSW	NA	146	5
Science Faculty	12:00 noon - 12:00 noon	66 Satisfactory	97 Satisfactory	83	2.7	WSW	28	98	1								

Permissible Limits: $PM_{10} = 100$; $PM_{2.5} = 60$, all units are in $\mu g/m^3$

NOTE: 1 A continuous study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings,

their PM_{2.5} concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

 $I = \frac{I_{high} - I_{low}}{C_{high} - C_{low}} * (C - C_{low}) + I_{low}$

where, I = Air Quality Index, C=Pollutant Concentration (PM2.5), Clow=Concentration Breakpoint ≤C, Chigh=Concentration Breakpoint ≥C, Ilow=Index Break point corresponding to Clow, Ihigh=Index Breakpoint corresponding to Chigh