Radhasoami Dayal Ki Daya Radhasoami Sahai

AIR QUALITY MONITORING @ 40 FEET HEIGHT – Report Date: 20.09.2021

Permissible Limits: $PM_{10} = 100$; $PM_{2.5} = 60$, all units are in $\mu g/m^3$

Site Location	Sampling Time (24 hrs)	DAYALBAGH (TIME WEIGHTED AVERAGE DATA)								SANJAY PLACE (ARITHMETIC MEAN DATA)							
		AQI On The Basis of PM _{2.5} Concentration			Meteorological Parameters @ Dayalbagh					AQI On The Basis of PM _{2.5} Concentration		Meteorological Parameters @ Sanjay Place					
		Today Sep 20- Sep 19	Yesterday Sep 19- Sep 18	RH %	WS m/s	WD	T °C	SR W/ m ²	RF mm	Today Sep 20- Sep 19	Yesterday Sep 19- Sep 18	RH %	WS m/s	WD	T °C	$\begin{array}{c} SR \\ W/m^2 \end{array}$	RF mm
4 / 97	12:00 noon - 12:00 noon	57 Satisfactory	70 Satisfactory	80	3.1	SE	30	104	0								
3 / 34	12:00 noon - 12:00 noon	63 Satisfactory	70 Satisfactory	81	3.1	SE	29	90	0	59 Satisfactory	61 Satisfactory	73	1.3	ENE	NA	180	0
Science Faculty	12:00 noon - 12:00 noon	NA	NA	NA	NA	NA	NA	NA	NA								

NOTE: 1 A continuous study conducted as part of Dayalbagh Sigma Six Qualities and Values Model implementation.

2 DEI is using United States Environmental Protection Agency (USEPA) methodology and online calculators to calculate AQI. For fair comparison with UPPCB Sanjay Place Weather Station readings, their PM₂₅ concentration readings are fed in USEPA online calculator for AQI calculation.

3 Formula for AQI calculation for a Pollutant -

 $I = \frac{I_{\text{high}} - I_{\text{low}}}{C_{\text{high}} - C_{\text{low}}} * (C - C_{\text{low}}) + I_{\text{low}}$

where, I = Air Quality Index, C=Pollutant Concentration (PM2.5), Clow=Concentration Breakpoint ≤C, Chigh=Concentration Breakpoint ≤C, Ilow=Index Break point corresponding to Clow, Ihigh=Index Breakpoint corresponding to Chigh