|
Prof. D.K. Chaturvedi
DayalBagh Educational Institute |
Dayalbagh Educational Institute Soft computing Engineering Laboratory
(DEISEL)
Development of Generlaized Neuron and its variations:
- Original Implementation: Generalized Neuron (GN) model c-code
(GN.c)
- GN Variations:
- GN Model0 (GN_model0.c) output = osigma*wsigma + opi*wpi
- GN Model1 (GN_model1.c) output = osigma*wsigma + opi * (1-wsigma)
- GN Model2 (GN_model2.c) output = (Osigma^wsigma)* (opi ^ (1-wsigma))
- GN Model3 (GN_model3.c) output = osigma * wsigma + (osigma+opi-osigma*opi)*(1- wsigma)
- GN Model4 (GN_model4.c) output = (osigma ^ wsigma) * ((osigma+opi- osigma*opi)^(1-wsigma))
- GN Model5 (GN_model5.c) output = sqrt(osigma*opi)*wsigma + (osigma+opi)*(1- wsigma)/2.0
- GN Model6 (GN_model6.c) output = sqrt(osigma*opi)^(1- wsigma)* (osigma+opi)/2.0) ^ (1- wsigma)
- GN Model7 (GN_model7.c)
- Revision: Generlaized Matlab ver. 6.5 Code GN1.m
- Benchmark Testing: Benchmark.m
- Parity Problem
- Voting Problem
- Spiral Problem
- Mackey Glass Problem
- GN Applications in:
- Machine Modeling
- Power System Control
- Electrical Load Forecasting
- Channel Equalization
- Robotic Control
- Air craft Landing Control