	DAYALBAGH EDUCATIONAL INSTITUTE							
			FACULTY OF SC DEPARTMENT OF MA					
Cour	se Type	Course Code	Name of Course	Lectures/Week (of 55Min e	each)	Credits	
M	lajor	MAM 181	Engineering Mathematics I	3			3	
Introdu	uction:							
mathe derivat	matics, eng tives, and v	gineering, and appl ector calculus. The	nowledge in <i>Calculus and Linear A</i> ied sciences. It covers key concep course emphasizes understandin professional challenges.	ts such as linear independ	dence, matrix	rank, lim	its,	
Object	ives:							
1. 2. 3. 4. 5.	 and integrals. 2. To apply theoretical knowledge of linear independence, matrix rank, and the Cayley-Hamilton theorem in solving systems of linear equations. 3. To enhance skills in differentiation, including partial, directional, and total derivatives, and to apply these concepts in practical scenarios involving functions of several variables. 4. To introduce students to vector calculus concepts, including gradient, divergence, and curl, and to understand their significance in physical applications. 							
Course	e Outcome	es (CO):						
	s course is 1 · Understa		dence, calculate matrix rank, solve	linear systems and ann	ly the Cavley-F	Hamilton	theorem to	
ma	trices.							
	2: Gain pro ferentiatior	-	s, differentiation, and Mean Valu	ue Theorems, and apply	Leibnitz theor	rem for h	nigher-order	
CO	3: Analyze	limits, compute pai	rtial and directional derivatives, u	se Euler's theorem, apply	Taylor series	expansio	ns, and find	
	-	na of multivariable skills to handle ve	functions. ector-valued functions, calculate	arc length, and apply dou	uble/triple inte	egrals foi	r calculating	
	a and volu					- 	-	
		-	vector field operations (gradient, rems in simple scenarios.	divergence, curi), evalua	ate line and si	urrace in	tegrais, and	
Unit No			Topics to be Covered		Learning outcomes	Bloom	s Taxonomy	
1.	simultaneo theorem.	ous equations, Eige	ctors, Rank of a matrix, Solution of a matrix, Solution of a matrix, Solution of a matrix of a sector of the secto	osition, Cayley-Hamilton	CO1			
2.			$t = \delta$ definition of limit, continu leterminate forms, successive		CO2			
3	3. Functions of several variables: Limit of real valued functions of several variables, Partial, directional and total derivative, Euler's theorem, Taylor Series (in one and two variables), Maxima and Minima, Jacobians							
1		ued functions, arc	ions of one variable, Differentia length, Double and Triple Integra	•	CO4			

		radient, Divergence and curl. Line and Surface Integrals, Gauss, Green's and Stroke's neorem (without proof). Simple Applications.			
Text B	ooks and Reference Boo	ks:			
S. No.	Title	Author(s)	Edition, Year	r, Publisher	Place
	Advanced Engineering Mathematics	Erwin Kreyszig	10th Edition, 201	1, Wiley	USA
2.	Thomas' Calculus	George B. Thomas, Maurice D. Weir, Joel Hass	14th Edition, 201 Pearson Educatio	l8, on	USA

	DAYALBAGH EDUCATIONAL INSTITUTE FACULTY OF SCIENCE								
	DEPARTMENT OF MATHEMATICS								
Cours	se Type	Course Co	ode	Name of Course	Lect	ures/Week	of 55Min	each)	Credits
Μ	ajor	MAM 28	1 En	gineering Mathematics II		3			3
Introdu	uction:								
equips	students w		nodel, ana	omplex analysis forms the balyze, and solve dynamic sys					
Objecti	ives:								
2. 3. 4.	Equip stud Introduce theory. Familiariz	lents with tecl methods to so e students wit	hniques to olve partial th the basic	amental concepts in ordinary solve first-order and higher-o differential equations with a cs of complex analysis and its problems involving singular	order line pplications applications	ear differential ear ons in heat transfo tions.	quations. er, wave motio	-	
Course	Outcome	es (CO):							
• • •	solutions. CO2: Analytransform CO3: Form Laplace ec CO4: Unde Cauchy's I	yze and solve ation of varial nulate and sol quations. erstand and a ntegral Formu yze singulariti	second-or bles, and r lve partial o pply funda ula.	rder ordinary differential equ der ordinary differential equ emoval of the first derivative differential equations of the mental concepts of analytic d functions using Taylor's and	uations u e. first and function	sing methods lik second order w s, including the (e variation of ith applicatior Cauchy-Riema	paramete ns to wave nn equat	ers, e, heat, and ions and
Unit No				Topics to be Covered			Learning outcomes	Bloom	s Taxonomy
		l equations o and orthogon		r: Linear and non-linear equa ries.	ations, si	ingular	CO1	Understa Applying	-
2				equations: Solutions with on nsformations, and variation of		-	CO2	Applying	, Analyzing
3	Partial differential equations: First-order PDEs, homogeneous and non-homogeneous PDEs with constant coefficients, and solutions of diffusion, wave, and Laplace CO3 Applying, Analyzing equations.					, Analyzing			
4	Complex analysis: Analytic functions, Cauchy-Riemann equations, conjugate harmonic functions, and Cauchy's Integral Formula.								
5	Singularities and residue theorem: Taylor's and Laurent's expansions, zeros, poles, essential singularities, and evaluation of integrals using Cauchy's Residue Theorem.								
Text Bo	ooks and R	eference Boo	ks:				-	-	
S. No.		Title		Author(s)		Edition, Yea			Place
	Advanced Mathemati	Engineering cs	Erwin Kre	eyszig		10th Edition, 20 India	11, Wiley	New Del	hi, India

	<u></u>	Mathematics	B.V. Ramana	Hill Education	New Delhi, India
	3	Textbook of Differential Calculus	Gorakh Prasad	Latest Edition, Pothishala Pvt. Ltd.	Allahabad, India
2	1	Differential Equations	Ray and Sharma	Latest Edition	New Delhi, India

	DAYALBAGH EDUCATIONAL INSTITUTE FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS								
Cours	se Type	Course Co		ſ		res/Week (of 55Min	each)	Credits
	Major MAM 381 Engineering Mathematics III 3					3			
Introdu	-			<u> </u>					
apply t Object 1. 7 2. 7 3. 7 6 4. 7 6 5. 7 Course	 The Present course provides strong foundations of Laplace, Fourier and Z-Transformation enabling students to understand and apply the basic concepts required for advanced studies. Objectives: To develop a good understanding of important concepts in Integral Transform. To understand the Laplace transform and its applications. To enhance the skills of applications of Fourier, Laplace and Z transform (Discrete-time systems, control theory, and digital signal processing) To create the interest to solve problems and engage in discussions and work with peers to solve problems and deepen understanding. To develop skills for mathematical credibility. Course Outcomes (CO): This course is aimed at CO1: Know about Fourier series initial conditions and its applications to different engineering models								
fun CO CO	nctions an 4: Familia	d their appl arize with th	ne concept of Z transfo cations of Laplace and	rm, inverse Z Z transform	Z trans	sform and its	s properties	Partial d	lifferential
No	FOURIE		Topics to be Co	vered			outcomes	Bloom	s Taxonomy
			Half range series, Harm	onic analysis.			CO1		
2	Finite and		ORMS Durier Transforms, Foun s of Fourier Transforms.	rier Integral T	Theore	em, Inversion	CO2		
3.	Standard derivative		nifting and Convoluti aplace Transforms, Lapl						
4.	 Z TRANSFORMS Standard Forms of Z- Transform, Shifting and Convolution Theorems, Transforms of derivatives. Inverse of Z-Transforms, Z- transforms of standard Functions. 								
	5. APPLICATIONS OF LAPLACE AND Z-TRANSFROMS Solutions of ODE's and PDE's, Solve initial and boundary value problems, Solution of one-dimensional diffusion equation, first and second order one- dimensional wave equation and two-dimensional Laplace equations.								
5.	Solution dimensior	of one-dime nal wave equ	nsional diffusion equati ation and two-dimension	on, first and	secon	d order one-			
5.	Solution dimension ooks and F	of one-dime	nsional diffusion equati ation and two-dimension	on, first and al Laplace equ	secon	d order one-			Place

INTEGRAL TRANSFORM		2 rd adition 2015 Taylor and	
AND THEIR	Lokenath Debnath, Dambaru Bhatta	3 rd edition, 2015, Taylor and	USA
APPLICATIONS		Francis Group	

DAYALBAGH EDUCATIONAL INSTITUTE FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS							
Course Type	Course Type Course Code Name of Course Lectures/Week (of 55Min each) Credits						
MAJOR	MAJOR MAM 481 ENGINEERING MATHEMATICS IV 3 3						
Introduction:	Introduction:						

Probability and Statistics are foundational disciplines in mathematics that are essential for understanding and analyzing uncertainty and data. This course introduces the fundamental principles of probability theory and statistical methods, providing students with the tools to model randomness, make informed decisions, and draw conclusions from data. It bridges the gap between theoretical concepts and real-world applications in fields such as science, engineering, economics, medicine, and social sciences.

Objectives:

- 1. To develop an understanding of basic concepts in probability, including random variables, probability distributions, and expected values.
- 2. To introduce key statistical methods for summarizing, analyzing, and interpreting data.
- 3. To apply probability and statistical models to solve practical problems in various domains.
- 4. Students will explore various probabilistic models, such as binomial, Poisson, and normal distributions.
- 5. To provide a foundation for more advanced topics in probability theory, inferential statistics, and data science.

Course Outcomes (CO):

After completion of the course, students will be able to:

- 1. Gain proficiency in solving problems involving probability distributions and random processes.
- 2. Be able to apply statistical methods to analyze and interpret real-world data.
- 3. Develop a strong foundation in stochastic processes and Markov models, enabling them to model, analyze and solve problems in fields such as engineering, economics, biology and computer science.
- 4. Be able to apply the principles and methods of statistical estimation to derive estimators, providing a strong foundation for advanced studies in statistical inference and data analysis.
- 5. Calculate and interpret the strength and direction of relationships between variables using correlation coefficients (e.g., Pearson's correlation coefficient).

Unit No	Topics to be Covered	Learning outcomes	Bloom's Taxonomy
	Conditional Probability, Baye's Theorem; Measure of central Tendency and dispersion in terms of moments. Mathematical expectations.	CO1	
2.	Random Variables: Discrete and continuous, Probability mass/ density function, cumulative mass/ density function. Binomial, Poisson and Normal distributions and their applications.		
3.	Stochastic Processes Stationary processes, Markov process, Memoryless random variable, Markov chains with finite and countable state space, classification of states, Markov processes in continuous time.		
4.	Theory of Estimation Point and Interval Estimation, Criterion of unbiasedness, Consistency, Efficiency, sufficiency, Methods of estimation: maximum likelihood moments	CO4	

5.	Curve fitting (Method of least squa analysis.	ear regression	CO5		
Text I	Books and Reference Books:				
S. No.	Title	Author(s)	Edition, Yea	r, Publisher	Place
1-	Probability and Statistics for engineers and scientists	Walpole, R.E., Mayers, R.L., Myers, S.L., and Ye K.			
2.	Probability and statistics for Engineers	Johnson, R.A.			
3.	Mathematical Statistics	Kapoor and Saxena			

			LBAGH EDUCATIONAL INSTIT FACULTY OF ENGINEERING PARTMENT OF MATHEMATIC			
Cours	se Type	Course Code	Name of Course	Le	ectures/Week (of 55Mir each)	Credits
М	ajor	MAM 581	DISCRETE MATHEMATICS		3	3
Introdu	uction:					
introduc	es student	the foundational concepts of discret s to mathematical reasoning, structu engineering, and related fields.				
Object	ives:					
2. 3.	To introdu To build sl	p an understanding of mathematical ice fundamental algebraic structures kills in solving recurrence relations a ce problem-solving abilities through	s, set theory, and combinatorion analyzing discrete function	s.	thematics in computer science.	
Course	Outcome	es (CO):				
CO1 CO2 CO3 CO4	2: Analyze 3: Study alg 1: Solve co	aimed at and and apply principles of mathema set relations, partitions, and partially gebraic structures such as groups, se mbinatorics problems using counting currence relations and generate func	ordered sets, applying conce migroups, and Boolean algebr principles, permutations, cor	pts like a, and nbinat	e the Axiom of Choice and Zorn's apply them to problems in com ions, and binomial expansions.	
Unit No		Topics to be C	Covered		Learning outcomes	Bloom's Taxonomy
1.	implication for prop quantifie	atical Logic: Truth tables, equiva ons, normal forms (disjunctive and positional calculus; Predicate calc rs, free and bound variables, rs, rules of inference for predicat	conjunctive); Theory of infer culus: predicates, variables universe of discourse, ne	ence and ested	CO1: Understand and apply principles of logical reasoning and inference.	Apply, Analyze
2.	countabl ordered	ry & relations: equivalence relation e and uncountable sets, axiom o set, upper bound/lower boun m, infimum, lattice, zorn's lemma, w	of choice, partially ordered nd, maximal/minimal elem	set,	CO2: Understand and apply set theory concepts and relations in discrete structures.	Understand, Apply
Algebraic Structures & Graph Theory: Groupoid, monoid, semigroups, groups, subgroups; Graphs: connectivity, matching, coloring; Boolean Algebra: combinational and sequential circuits, minimization; Number representations applications in computer					structures and their	Apply, Analyze
4. Combinatorics: Fundamental laws of counting, pigeonhole principle, permutations, combinations, binomial theorem, multinomial theorem, principle of exclusion and inclusion. CO4: Apply combinatorial techniques to solve problems in discrete mathematics.					Apply, Analyze	
5. Discrete Numeric Functions & Recurrence Relations: Discrete numeric functions, generating functions, recurrence relations. CO5: Solve recurrence relations and generate functions and generate functions for discrete functions. Apply, Analyze						
	ooks and R	eference Books:				
S. No.		Title	Author(s)		Edition, Year, Publisher	Place

1.	Discrete Mathematical Structures with Applications to Computer Science	J.P. Tremblay, R. Manohar	McGraw-Hill Publication, 1997	USA
2.	Discrete Mathematics	Chris R. Pope, Tingting Liu	C.L. Lee	India
3.	Discrete Mathematical Structures	Kolman, Busby, Ross	Prentice Hall Publication, 2004	USA
4.	Digital Principles and Applications	Leach Malvino	McGraw-Hill Publication, 2002	USA

	DAYALBAGH EDUCATIONAL INSTITUTE FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS							
Course Type	Course Code Name of Course ' ' ' ' (redits							
MAJOR								
Introducti	ion:							

This course provides an understanding of numerical methods for solving algebraic and transcendental equations, linear systems, interpolation, numerical differentiation and integration, and differential equations. It equips students with computational techniques necessary for engineering applications.

Objectives:

- 1. To introduce numerical methods for solving algebraic and transcendental equations with accuracy and efficiency.
- 2. To develop techniques for solving linear simultaneous algebraic equations and computing eigenvalues and eigenvectors.
- 3. To provide an understanding of interpolation methods and their applications in numerical analysis.
- 4. To introduce numerical differentiation and integration methods for solving complex mathematical problems.
- 5. To enable students to apply numerical methods for solving ordinary and partial differential equations relevant to engineering problems.

Course Outcomes (CO):

By the end of the course, students will be able to:

- **CO1**: To introduce numerical methods for solving algebraic and transcendental equations with accuracy and efficiency.
- CO2: To develop techniques for solving linear simultaneous algebraic equations and computing eigenvalues and eigenvectors.

CO3: To provide an understanding of interpolation methods and their applications in numerical analysis.

CO4: To introduce numerical differentiation and integration methods for solving complex mathematical problems.

CO5: To enable students to apply numerical methods for solving ordinary and partial differential equations relevant to engineering problems.

Unit No	Topics	to be Covered	Learning outcomes	Bloom's Taxonomy
1.	ALGEBRAIC AND TRANSCEN Numerical solution, Method of I Acceleration of Convergence by	bisection, Newton-Raphson Iteration,	, CO1	Understand, Analyze
2.	Linear simultaneous algebraic eq Solution by Cholesky's, Jacobi's Eigen Value and corresponding E	s and Gauss-Seidel methods. Largest	CO2 t	Analyze, Apply
2		kward, Central and Shift operators. verett's and Bessel's Formulae. polation.		Evaluate, Apply
4.	Numerical differentiation and inte Newton-Cotes Formula. Gaussia trapezoidal and Simpsons rule to	n Quadrature Formula, Extension of	CO4	Apply, Analyze
	ORDINARY DIFFERENTIAL EQUATIONS &Partial Differential Equations Numerical Solution, Methods of Taylor, Picard, Euler, Range-Kutta Adams-Bashforth and Milne's method. Simultaneous differential equations. Numerical Solution. Laplace and one-dimensional heat conduction equation.		, 1	Apply, Create
Text Boo	ks and Reference Books:		·	• •
S. No.	Title	Author(s)	Edition, Year, Publisher	Place

1.	Numerical Analysis	Conte and De Boor	or MacGraw Hill, 2005	
2.	Numerical Analysis	Hildebrand	1987, Dover Publications	USA
3.	Numerical Analysis	S S Sastry	2012, PHI Learning	Indian Edition
4.	Numerical Analysis for Scientista & Engineers	R G Stanton	2003, Dover Publications	USA

FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS						
Course Type Course Code Name of Course Lectures/Week (of 55Min each) Credits						
MAJOR MAM 681 Advanced Optimization Techniques			3	3		
Introduction:						

MAM 681 introduces the foundational and advanced concepts of mathematical programming and optimization, emphasizing their theoretical underpinnings and practical applications. The course covers a range of topics, from linear and non-linear programming to dynamic and quadratic programming. It equips students with analytical tools and techniques, such as convex analysis, duality, and optimization algorithms, to solve complex mathematical models. Additionally, the course integrates computational tools like MATLAB and CPLEX, enabling students to apply these methods to real-world decision-making and problem-solving scenarios in mathematics, engineering, and related fields.

Objectives:

- 1. To introduce the foundational concepts and principles of mathematical programming and optimization.
- 2. To explore the geometry and analysis of models and solutions in linear and non-linear programming problems.
- 3. To develop a strong understanding of convex and concave functions, duality concepts, and their applications in optimization problems.
- 4. To equip students with advanced methods for solving linear programming problems, including graphical, simplex, Big-M, and two-phase methods.
- 5. To provide a deep understanding of optimization techniques for non-linear problems, including single and multi-variable cases, and introduce methods such as Lagrange's method and KKT conditions.
- 6. To familiarize students with dynamic programming principles and their application to multistage decision processes and optimization problems.
- 7. To enable the practical application of optimization techniques using advanced tools like MATLAB and CPLEX solver.

Course Outcomes (CO):

By the end of the course, students will be able to:

- CO1: Understand the foundational concepts of mathematical programming, including convex polyhedra, convex and concave functions, and their applications to solving linear programming problems using graphical, simplex, Big-M, and twophase methods.
- **CO2**: Analyze and apply duality principles, dual-simplex methods, and transportation problem-solving techniques to optimize linear models.
- **CO3**: Evaluate and solve non-linear programming problems for single and multi-variable functions using methods such as Lagrange's method, KKT conditions, and search methods like Fibonacci, Golden section, and steepest descent.
- **CO4**: Demonstrate the use of dynamic programming principles, including sub-optimality, principle optimality, and the calculus and tabular methods, with applications to multistage decision processes and linear programming problems.
- **CO5**: Apply advanced optimization techniques in quadratic programming and utilize tools like MATLAB's optimization toolbox and the CPLEX solver for practical problem-solving in mathematical programming.

Unit No	Topics to be Covered	Learning outcomes	Bloom's Taxonomy
1.	Introduction to mathematical programming problems and models, Geometry and Analysis of models/solutions. Convex polyhedron, Concave and convex functions, Related theorems, Linear Models and representations, Definitions and Theorems, solution of l.p.p. graphical, simplex, two-phases of simplex, Big-M method.	mathematical	Underst and, Analyze

2.	Concept of Duality, Thec	orems, Dual-simplex, Transportation problem.	solution techniques like simplex and Big- M methods. CO2: Analyze and apply duality principles, dual- simplex methods, and techniques to optimize transportation problems in linear	Analyze, Apply		
	Non-linear programming (with and without const KKT conditions. Unimoda Steepest descent metho					
4.		Multistage decision processes, Concept of sub lculus method of solution, Tabular method of s mic programming.	CO4: Demonstrate dyr including sub-optimality solve problems using with real-world applicat	v and optim calculus and	ality con	
5.	Quadratic Programming, use of optimization toolbox in Matlab and CPLEX solver in optimization. CO5: Apply quadratic solving complex mathe					
Text Bo	ooks and Reference Book	ks:				
S. No.	Title	n, Year, Publisher	Place			
	Linear Programming	g G Hadley 4 th , 2002, Addison-W		dison-Wesley	USA	
Ζ.	Optimization TechniquesSS Rao4th, 2009, New Age InternationalIndia			India		
3	Mathematical Programming Techniques	NS Kambo	1 st , 2013, Khanna Publishers India			

DAYALBAGH EDUCATIONAL INSTITUTE								
	FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS							
Course Type Course Code Name of Course Lectures/Week (of 55Min each) O						Credits		
	PMA101 Computational Methods 4 4							
Introdu	uction:							
equation	ons, statis	-	ind linear progra	1	ential equations, integral transforms, internet in unit addresses mathematical technique	0		
Object	ives:							
 Appl Under Solv	ly Laplac erstand ar e optimiz	e and Fourier tr nd solve integra ation problems	ansforms to sol l equations, and	ve differential l analyze stati	ential equations. equations and boundary value problem stical distributions and hypothesis testin chniques.			
Course	e Outcome	es (CO):						
•	 techniques. CO4: Apply statistical concepts, including correlation, regression, and hypothesis testing, in engineering contexts. 							
Unit No		Topics to be C	overed	Learning outcomes	Bloom's Taxonomy			
1.	Equation that can be integrated by inspection, equation reducible to linear form, equation integrable by Lagrange's method, solution of equation under given geometrical conditions, Monge's methodRemembering: Recall forms and methods for solving second-order PDEs. Understanding: Explain different techniques				niques (e.g.,			
2.	 2. Standard forms, Shifting and convolution theorems, Transforms of derivatives, inverse Laplace transforms, Applications to the solution of linear and simultaneous differential equations, Finite and infinite Fourier transforms, Applications to boundary value problems CO2 Remembering: Recall key theorems and properties of Laplace and Fourier transforms. Understanding: Explain the application of transforms to differential equations. Applying: Use transforms to solve linear, simultaneous, and boundary value problems. 					forms. on of ear,		

3.			CO3	 Understanding: Describe the process of converting ODEs to integral equations. Applying: Apply Laplace transforms to solve integral equations. Analyzing: Differentiate between types of linea integral equations and methods for solving them 	
4.	Correlation and Regression, Binomial, Poisson and Normal distributions. Theory of testing of Hypothesis: Null and alternate hypotheses, simple and composite hypotheses, Type I & Type II errors, Critical region, Most powerful Critical region, Analysis of Variance.		CO4	Remembering: Recall statistical distributions and hypothesis testing terms. Understanding: Explain correlation, regression and distribution applications. Applying: Conduct hypothesis testing and variance analysis in real-world scenarios.	
5.	Graphical Method, Simplex method.		CO5	 Understanding: Describe graphical and simplex methods for linear programming. Applying: Formulate optimization problems in standard form. Evaluating: Solve and assess optimal solutions using the simplex method. 	
Text Bo	ooks and Reference Book	KS:			
S. No.	Title	Author(s)		Edition, Year, Publisher	Place
1	Advanced Mathematics for Engineers,	Raddick & Miller		2nd Edition, 1970, Wiley	USA
2.	Integral Transforms in Mathematical Physics	C.J. Tranter		Reprint Edition,1966, Methuen & Co. Ltd	London